30 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Anthropogenic pollution of rivers : spatiotemporal caracterisation and estimation of the flows

    No full text
    La Directive Cadre sur l'Eau exige le retour au bon Ă©tat des cours d'eau en Europe. Ces cours d'eau reçoivent en effet diffĂ©rentes pollutions liĂ©es aux diffĂ©rentes activitĂ©s Ă©conomiques des populations installĂ©es le long de leurs rives. On s'intĂ©resse souvent de façon isolĂ©e Ă  des types particuliers de pollution: pollution agricole dues aux pesticides, engrais et rĂ©sidus d'Ă©levage en milieu rural, pollution spĂ©cifique d'une industrie (sidĂ©rurgie, papeterie, etc.), pollution domestique plus ou moins bien traitĂ©e, etc. Or dans de nombreux cas, on a affaire Ă  un mĂ©lange de polluants. Dans le cas de la Moselle, la pollution gĂ©nĂ©rĂ©e par les activitĂ©s humaines dans la partie française du bassin versant de la Moselle impacte la qualitĂ© des eaux de surface en aval, et donc celle du Rhin. Notre but est de contribuer Ă  caractĂ©riser l’état de certains affluents de la Moselle (Madon, Meurthe, Vologne et Fensch) en fonction de leurs pressions anthropiques et de proposer une stratĂ©gie pour calculer les flux des polluants le long de ces cours d’eau. Dans ce contexte des compagnes de prĂ©lĂšvement avec un pas spatial fin. Outre les paramĂštres habituels de caractĂ©risation de l’état des masses d’eau (conductivitĂ©, pH, carbone organique dissous, azote ammoniacal, nitrates, etc.) une attention particuliĂšre a Ă©tĂ© portĂ©e aux propriĂ©tĂ©s optiques (absorbance UV-visible, fluorescence synchrone) de la matiĂšre organique dissoute afin de mieux comprendre son origine. Les spectres de fluorescence synchrone ont Ă©tĂ© Ă©tudiĂ©s par dĂ©convolution ou par analyse en composantes principales. En outre une mĂ©thode a Ă©tĂ© dĂ©veloppĂ©e, basĂ©e sur la spectroscopie de fluorescence synchrone, pour dĂ©tecter la prĂ©sence des azurants optiques. Enfin une mĂ©thodologie a Ă©tĂ© mise au point appliquĂ©e au Madon pour calculer les flux journaliers moyens de pollution Ă  chaque station d'Ă©chantillonnage pour chaque pĂ©riode d'Ă©chantillonnage Ă  partir de donnĂ©es gĂ©ographiques. Cette mĂ©thode permet ensuite d’évaluer les flux de pollutionThe Water Framework Directive demands a return to good condition for rivers in Europe. These rivers receive different types of pollution related to various economic activities of populations installed along their banks. We are often interested in an isolated manner to particular types of pollution: pollution due to agricultural pesticides, fertilizers and livestock waste in rural areas, pollution due to a specific industry (steel, paper mill, etc.), more or less well treated domestic pollution, etc. But in many cases, we are dealing with a mixture of pollutants. In the case of the Moselle, the pollution generated by human activities in the French part of the Moselle watershed impacts surface water quality downstream and therefore the Rhine. Our goal is to characterize the state of some tributaries of the Moselle (Madon, Meurthe, Vologne and Fensch) versus anthropogenic pressures and propose a strategy to calculate the flow of pollutants along these rivers. In this context, sampling campaigns with a dense spatial stations have been organized. In addition to the usual parameters characterizing water quality (conductivity, pH, dissolved organic carbon, ammonia nitrogen, nitrate, etc.) a particular attention has been given to optical properties (UV-visible absorbance, synchronous fluorescence) of dissolved organic matter in order to understand its origin. Synchronous fluorescence spectra were studied by deconvolution or by principal components analysis. A method has been developed, based on the synchronous fluorescence spectroscopy, to detect the presence of optical brighteners. Finally, a methodology has been developed in Madon watershed in order to calculate the mean daily pollution flux at each sampling station for each sampling period from geographic dat

    Pollution anthropique de cours d'eau : caractérisation spatio-temporelle et estimation des flux

    No full text
    AccĂšs restreint aux membres de l'UniversitĂ© de Lorraine jusqu'au 2016-04-24The Water Framework Directive demands a return to good condition for rivers in Europe. These rivers receive different types of pollution related to various economic activities of populations installed along their banks. We are often interested in an isolated manner to particular types of pollution: pollution due to agricultural pesticides, fertilizers and livestock waste in rural areas, pollution due to a specific industry (steel, paper mill, etc.), more or less well treated domestic pollution, etc. But in many cases, we are dealing with a mixture of pollutants. In the case of the Moselle, the pollution generated by human activities in the French part of the Moselle watershed impacts surface water quality downstream and therefore the Rhine. Our goal is to characterize the state of some tributaries of the Moselle (Madon, Meurthe, Vologne and Fensch) versus anthropogenic pressures and propose a strategy to calculate the flow of pollutants along these rivers. In this context, sampling campaigns with a dense spatial stations have been organized. In addition to the usual parameters characterizing water quality (conductivity, pH, dissolved organic carbon, ammonia nitrogen, nitrate, etc.) a particular attention has been given to optical properties (UV-visible absorbance, synchronous fluorescence) of dissolved organic matter in order to understand its origin. Synchronous fluorescence spectra were studied by deconvolution or by principal components analysis. A method has been developed, based on the synchronous fluorescence spectroscopy, to detect the presence of optical brighteners. Finally, a methodology has been developed in Madon watershed in order to calculate the mean daily pollution flux at each sampling station for each sampling period from geographic dataLa Directive Cadre sur l'Eau exige le retour au bon Ă©tat des cours d'eau en Europe. Ces cours d'eau reçoivent en effet diffĂ©rentes pollutions liĂ©es aux diffĂ©rentes activitĂ©s Ă©conomiques des populations installĂ©es le long de leurs rives. On s'intĂ©resse souvent de façon isolĂ©e Ă  des types particuliers de pollution: pollution agricole dues aux pesticides, engrais et rĂ©sidus d'Ă©levage en milieu rural, pollution spĂ©cifique d'une industrie (sidĂ©rurgie, papeterie, etc.), pollution domestique plus ou moins bien traitĂ©e, etc. Or dans de nombreux cas, on a affaire Ă  un mĂ©lange de polluants. Dans le cas de la Moselle, la pollution gĂ©nĂ©rĂ©e par les activitĂ©s humaines dans la partie française du bassin versant de la Moselle impacte la qualitĂ© des eaux de surface en aval, et donc celle du Rhin. Notre but est de contribuer Ă  caractĂ©riser l’état de certains affluents de la Moselle (Madon, Meurthe, Vologne et Fensch) en fonction de leurs pressions anthropiques et de proposer une stratĂ©gie pour calculer les flux des polluants le long de ces cours d’eau. Dans ce contexte des compagnes de prĂ©lĂšvement avec un pas spatial fin. Outre les paramĂštres habituels de caractĂ©risation de l’état des masses d’eau (conductivitĂ©, pH, carbone organique dissous, azote ammoniacal, nitrates, etc.) une attention particuliĂšre a Ă©tĂ© portĂ©e aux propriĂ©tĂ©s optiques (absorbance UV-visible, fluorescence synchrone) de la matiĂšre organique dissoute afin de mieux comprendre son origine. Les spectres de fluorescence synchrone ont Ă©tĂ© Ă©tudiĂ©s par dĂ©convolution ou par analyse en composantes principales. En outre une mĂ©thode a Ă©tĂ© dĂ©veloppĂ©e, basĂ©e sur la spectroscopie de fluorescence synchrone, pour dĂ©tecter la prĂ©sence des azurants optiques. Enfin une mĂ©thodologie a Ă©tĂ© mise au point appliquĂ©e au Madon pour calculer les flux journaliers moyens de pollution Ă  chaque station d'Ă©chantillonnage pour chaque pĂ©riode d'Ă©chantillonnage Ă  partir de donnĂ©es gĂ©ographiques. Cette mĂ©thode permet ensuite d’évaluer les flux de pollutio

    Characterization of hyporheic DOM by optical methods

    No full text
    International audienc

    Expérience de recherche participative dans le bassin du Madon (Lorraine, France)

    No full text
    La recherche participative (ou recherche citoyenne) permet d’établir un partenariat entre le milieu acadĂ©mique (laboratoire universitaire et ses chercheurs) et le milieu associatif ou scolaire pour rĂ©aliser des Ă©tudes Ă  visĂ©e scientifique. Elles permettent Ă  la fois de mieux faire apprĂ©cier la dĂ©marche scientifique au grand public (qu’il s’agisse d’enfants ou d’adultes) et d’obtenir des donnĂ©es, sur le long terme ou sur un grand secteur gĂ©ographique, utiles au chercheur. C’est dans ce cadre que deux actions se sont dĂ©roulĂ©es entre 2012 et 2014 sur le bassin du Madon, l’un des affluents de la Moselle, dans le sud de la Lorraine. Une premiĂšre action a Ă©tĂ© rĂ©alisĂ©e dans le cadre d’une manifestation socioculturelle (les Chemins de l’Eau) organisĂ©e par la FĂ©dĂ©ration DĂ©partementale des Foyers Ruraux en juin 2013 : afin de sensibiliser les visiteurs aux ressources en eau dans leur environnement immĂ©diat, une hydrothĂšque a Ă©tĂ© crĂ©Ă©e. La seconde action s’est adressĂ©e Ă  des classes de primaire (CE2-CM1-CM2 et CM2) de trois localitĂ©s rurales le long du Madon (Lerrain, Mattaincourt et HarouĂ©). Tous les Ă©chantillons ont ensuite fait l’objet d’analyses au laboratoire : pH, conductivitĂ©, carbone organique dissous, azote total dissous, azote ammoniacal, ions majeurs, propriĂ©tĂ©s optiques (spectroscopie UV-visible, fluorescence). Ces expĂ©riences ont permis d’avoir un suivi temporel de trois stations le long du Madon et de participer Ă  une cartographie des ressources en eau des Vosges en fonction des caractĂ©ristiques du bassin versant et de l’usage des sols. Dans les deux cas, le public visĂ© a montrĂ© un vif intĂ©rĂȘt.Participatory research establishes a partnership between the academic community (university laboratory and its researchers) and the associative or school environment, in order to conduct scientific studies. This approach favours a better understanding of the scientific approach by the public (whether children or adults) and provides data on the long-term or over a large geographical area that are useful for researchers. It is in this context that two actions took place between 2012 and 2014 in the Madon River watershed. The Madon River is a tributary of the Moselle, in the south of Lorraine (northeastern France). The first action was carried out as part of a socio-cultural event (les Chemins de l’Eau) organized by the FĂ©dĂ©ration DĂ©partementale des Foyers Ruraux in June 2013 to educate visitors about the water resources in their immediate environment. A water library was created. The second action was focused on primary school classes (CE2-CM1-CM2 and CM2) from three rural communities along the Madon (Lerrain, Mattaincourt and HarouĂ©). All samples were subjected to laboratory analysis: pH, conductivity, dissolved organic carbon, total dissolved nitrogen, ammonia nitrogen, major ions, optical properties (UV-visible spectroscopy, fluorescence). These experiments provided a temporal monitoring of three stations along the Madon River and allowed the public to participate in the mapping of water resources in the Vosges area based on watershed characteristics and land use. In both cases the participants proved to be very interested by the approach

    Nitrates monitoring by UV–vis spectral analysis

    No full text
    International audienceThe monitoring of nitrates using the second derivative of UV–vis spectra has been tested for a large set of samples (≈900) covering a large range of freshwater environments in the Moselle River drainage basin (headwater streams in the Vosges Mountains; tributaries, including the Madon River and Vologne River; and waters of various origins exposed to anthropogenic activities in villages). Satisfactory linear correlations (coefficient of determination > 0.74) were obtained between nitrate concentrations (measured by ion chromatography with a conductivity detector) and the maxima of the second derivative in the UV range for sets of mesotrophic and eutrophic samples. The meaningfulness of the linear regressions was verified by applying a Fisher-Snedecor test using a level of confidence of 0.05. The quality of the correlation decreased when the samples came from oligotrophic environments due to the limited sensitivity of the ion chromatography technique. UV–vis spectroscopy combined with the second derivative method appears to be a good alternative for monitoring nitrate-related eutrophication in the laboratory as well as in situ using submersible spectrophotometers
    corecore