97 research outputs found
The C-Type Lectin of the Aggrecan G3 Domain Activates Complement
Excessive complement activation contributes to joint diseases such as rheumatoid arthritis and osteoarthritis during which cartilage proteins are fragmented and released into the synovial fluid. Some of these proteins and fragments activate complement, which may sustain inflammation. The G3 domain of large cartilage proteoglycan aggrecan interacts with other extracellular matrix proteins, fibulins and tenascins, via its C-type lectin domain (CLD) and has important functions in matrix organization. Fragments containing G3 domain are released during normal aggrecan turnover, but increasingly so in disease. We now show that the aggrecan CLD part of the G3 domain activates the classical and to a lesser extent the alternative pathway of complement, via binding of C1q and C3, respectively. The complement control protein (CCP) domain adjacent to the CLD showed no effect on complement initiation. The binding of C1q to G3 depended on ionic interactions and was decreased in D2267N mutant G3. However, the observed complement activation was attenuated due to binding of complement inhibitor factor H to CLD and CCP domains. This was most apparent at the level of deposition of terminal complement components. Taken together our observations indicate aggrecan CLD as one factor involved in the sustained inflammation of the joint
World Stroke Organization Brain & hEart globAl iniTiative Program
Introduction. The World Stroke Organization (WSO) Brain & Heart Task Force developed The Brain & hEart globAl iniTiative (BEAT), a pilot feasibility implementation program aimed at establishing clinical collaborations between cardiologists and stroke physicians who work at large healthcare facilities. Methods. The WSO BEAT pilot project focused on atrial fibrillation (AF) and patent foramen ovale (PFO) detection and management, and post-stroke cardiovascular complications known as the stroke-heart syndrome. The program included 10 sites from 8 countries: Brazil, China, Egypt, Germany, Japan, Mexico, Romania, and the USA. The primary composite feasibility outcome was the achievement of the following 3 implementation metrics (1) developing site-specific clinical pathways for the diagnosis and management of AF, PFO, and the stroke heart syndrome; (2) establishing regular Neurocardiology rounds (e.g., monthly); and (3) incorporating a cardiologist to the stroke team. The secondary objectives were (1) to identify implementation challenges to guide a larger program and (2) to describe qualitative improvements.Results. The WSO BEAT pilot feasibility program achieved the pre-specified primary composite outcome in 9 of 10 (90%) sites. The most common challenges were the limited access to specific medications (e.g., direct oral anticoagulants) and diagnostic (e.g., prolonged cardiac monitoring) or therapeutic (e.g., PFO closure devices) technologies. The most relevant qualitative improvement was the achievement of a more homogeneous diagnostic and therapeutic approach.Discussion/Conclusion. The WSO BEAT pilot program showed that developing Neurocardiology collaborations is feasible. The long-term sustainability of the WSO BEAT program and its impact on quality of stroke care and clinical outcomes needs to be tested in a larger and longer-duration program
Altered versican cleavage in ADAMTS5 deficient mice : a novel etiology of myxomatous valve disease
AbstractIn fetal valve maturation the mechanisms by which the relatively homogeneous proteoglycan-rich extracellular matrix (ECM) of endocardial cushions is replaced by a specialized and stratified ECM found in mature valves are not understood. Therefore, we reasoned that uncovering proteases critical for ‘remodeling’ the proteoglycan rich (extracellular matrix) ECM may elucidate novel mechanisms of valve development. We have determined that mice deficient in ADAMTS5, (A Disintegrin-like And Metalloprotease domain with ThromboSpondin-type 1 motifs) which we demonstrated is expressed predominantly by valvular endocardium during cardiac valve maturation, exhibited enlarged valves. ADAMTS5 deficient valves displayed a reduction in cleavage of its substrate versican, a critical cardiac proteoglycan. In vivo reduction of versican, in Adamts5−/− mice, achieved through Vcan heterozygosity, substantially rescued the valve anomalies. An increase in BMP2 immunolocalization, Sox9 expression and mesenchymal cell proliferation were observed in Adamts5−/− valve mesenchyme and correlated with expansion of the spongiosa (proteoglycan-rich) region in Adamts5−/− valve cusps. Furthermore, these data suggest that ECM remodeling via ADAMTS5 is required for endocardial to mesenchymal signaling in late fetal valve development. Although adult Adamts5−/− mice are viable they do not recover from developmental valve anomalies and have myxomatous cardiac valves with 100% penetrance. Since the accumulation of proteoglycans is a hallmark of myxomatous valve disease, based on these data we hypothesize that a lack of versican cleavage during fetal valve development may be a potential etiology of adult myxomatous valve disease
Versican G3 Promotes Mouse Mammary Tumor Cell Growth, Migration, and Metastasis by Influencing EGF Receptor Signaling
Increased versican expression in breast tumors is predictive of relapse and has negative impact on survival rates. The C-terminal G3 domain of versican influences local and systemic tumor invasiveness in pre-clinical murine models. However, the mechanism(s) by which G3 influences breast tumor growth and metastasis is not well characterized. Here we evaluated the expression of versican in mouse mammary tumor cell lines observing that 4T1 cells expressed highest levels while 66c14 cells expressed low levels. We exogenously expressed a G3 construct in 66c14 cells and analyzed its effects on cell proliferation, migration, cell cycle progression, and EGFR signaling. Experiments in a syngeneic orthotopic animal model demonstrated that G3 promoted tumor growth and systemic metastasis in vivo. Activation of pERK correlated with high levels of G3 expression. In vitro, G3 enhanced breast cancer cell proliferation and migration by up-regulating EGFR signaling, and enhanced cell motility through chemotactic mechanisms to bone stromal cells, which was prevented by inhibitor AG 1478. G3 expressing cells demonstrated increased CDK2 and GSK-3β (S9P) expression, which were related to cell growth. The activity of G3 on mouse mammary tumor cell growth, migration and its effect on spontaneous metastasis to bone in an orthotopic model was modulated by up-regulating the EGFR-mediated signaling pathway. Taken together, EGFR-signaling appears to be an important pathway in versican G3-mediated breast cancer tumor invasiveness and metastasis
Alteration of chondroitin sulfate composition on proteoglycan produced by knock-in mouse embryonic fibroblasts whose versican lacks the A subdomain
Versican/proteoglycan-mesenchymal (PG-M) is a large chondroitin sulfate (CS) proteoglycan of the extracellular matrix (ECM) that is constitutively expressed in adult tissues such as dermis and blood vessels. It serves as a structural macromolecule of the ECM, while in embryonic tissue it is transiently expressed at high levels and regulates cell adhesion, migration, proliferation, and differentiation. Knock-in mouse embryonic (Cspg2Δ3/Δ3) fibroblasts whose versican lack the A subdomain of the G1 domain exhibit low proliferation rates and acquire senescence. It was suspected that chondroitin sulfate on versican core protein would be altered when the A subdomain was disrupted, so fibroblasts were made from homozygous Cspg2Δ3/Δ3 mouse embryos to investigate the hypothesis. Analysis of the resulting versican deposition demonstrated that the total versican deposited in the Cspg2Δ3/Δ3 fibroblasts culture was approximately 50% of that of the wild type (WT), while the versican deposited in the ECM of Cspg2Δ3/Δ3 fibroblasts culture was 35% of that of the WT, demonstrating the lower capacity of mutant (Cspg2Δ3/Δ3) versican deposited in the ECM. The analysis of CS expression in the Cspg2Δ3/Δ3 fibroblasts culture compared with wild-type fibroblasts showed that the composition of the non-sulfate chondroitin sulfate isomer on the versican core protein increased in the cell layer but decreased in the culture medium. Interestingly, chondroitin sulfate E isomer was found in the culture medium. The amount of CS in the Cspg2Δ3/Δ3 cell layer of fibroblasts with mutant versican was dramatically decreased, contrasted to the amount in the culture medium, which increased. It was concluded that the disruption of the A subdomain of the versican molecule leads to lowering of the amount of versican deposited in the ECM and the alteration of the composition and content of CS on the versican molecule
ADAMTS metalloproteases generate active versican fragments that regulate interdigital web regression
SummaryWe show that combinatorial mouse alleles for the secreted metalloproteases Adamts5, Adamts20 (bt), and Adamts9 result in fully penetrant soft-tissue syndactyly. Interdigital webs in Adamts5−/−;bt/bt mice had reduced apoptosis and decreased cleavage of the proteoglycan versican; however, the BMP-FGF axis, which regulates interdigital apoptosis was unaffected. BMP4 induced apoptosis, but without concomitant versican proteolysis. Haploinsufficiency of either Vcan or Fbln1, a cofactor for versican processing by ADAMTS5, led to highly penetrant syndactyly in bt mice, suggesting that cleaved versican was essential for web regression. The local application of an aminoterminal versican fragment corresponding to ADAMTS-processed versican, induced cell death in Adamts5−/−;bt/bt webs. Thus, ADAMTS proteases cooperatively maintain versican proteolysis above a required threshold to create a permissive environment for apoptosis. The data highlight the developmental significance of proteolytic action on the ECM, not only as a clearance mechanism, but also as a means to generate bioactive versican fragments
Integrating new approaches to atrial fibrillation management: the 6th AFNET/EHRA Consensus Conference.
There are major challenges ahead for clinicians treating patients with atrial fibrillation (AF). The population with AF is expected to expand considerably and yet, apart from anticoagulation, therapies used in AF have not been shown to consistently impact on mortality or reduce adverse cardiovascular events. New approaches to AF management, including the use of novel technologies and structured, integrated care, have the potential to enhance clinical phenotyping or result in better treatment selection and stratified therapy. Here, we report the outcomes of the 6th Consensus Conference of the Atrial Fibrillation Network (AFNET) and the European Heart Rhythm Association (EHRA), held at the European Society of Cardiology Heart House in Sophia Antipolis, France, 17-19 January 2017. Sixty-two global specialists in AF and 13 industry partners met to develop innovative solutions based on new approaches to screening and diagnosis, enhancing integration of AF care, developing clinical pathways for treating complex patients, improving stroke prevention strategies, and better patient selection for heart rate and rhythm control. Ultimately, these approaches can lead to better outcomes for patients with AF
Methods for Monitoring Matrix-Induced Autophagy.
A growing body of research demonstrates modulation of autophagy by a variety of matrix constituents, including decorin, endorepellin, and endostatin. These matrix proteins are both pro-autophagic and anti-angiogenic. Here, we detail a series of methods to monitor matrix-induced autophagy and its concurrent effects on angiogenesis. We first discuss cloning and purifying proteoglycan fragment and core proteins in the laboratory and review relevant techniques spanning from cell culture to treatment with these purified proteoglycans in vitro and ex vivo. Further, we cover protocols in monitoring autophagic progression via morphological and microscopic characterization, biochemical western blot analysis, and signaling pathway investigation. Downstream angiogenic effects using in vivo approaches are then discussed using wild-type mice and the GFP-LC3 transgenic mouse model. Finally, we explore matrix-induced mitophagy via monitoring changes in mitochondrial DNA and permeability
- …