235 research outputs found

    Exergy assessment of topsoil fertility

    Get PDF
    Soil degradation, affecting around 38% of the world''s cropland, threatens the global food supply. Due to the soil''s complexity, the measure of soil degradation that involves the loss of soil fertility due to crop system management processes represents an unsolved problem. Exergy is a property with the potential to be used in soil fertility and/or degradation analysis. A methodology to determine the exergy value fenced in a fertile soil due to its inorganic and organic components is established in this study and will be applied to evaluate soil fertility, degradation, and quality. As a first step, the exergy of perfect topsoil with optimum characteristics called "OptSOIL" is determined. The "OptSOIL" is established by agronomic expertise and will allow establishing a general theoretical reference suitable to execute exergy assessments of soils and compare the degradation grade of any soil concerning the best possible. Consequently, we introduce a perfect fertile planetary crust made of “OptNUT” and “OptSOM” invariant and independent of the different local textures, but not independent of their water content and aeration. We call this imaginary crust -copiously fertile- Pristinia as opposed to Thanatia, a dead state referring to abiotic resources. Thus, any real agricultural soil will be an intermediate soil between Pristinia and Thanatia. This idea might serve to quantitatively diagnose an assessment of all the concepts by which soil is degraded. The methodology has been validated through laboratory agronomic tests for different soils, concluding that exergy is a rigorous indicator to measure topsoil fertility. © 2021 The Author

    Apples to apples A^2 – II. Cluster selection functions for next-generation surveys

    Get PDF
    We present the cluster selection function for three of the largest next-generation stage-IV surveys in the optical and infrared: Euclid-Optimistic, Euclid-Pessimistic and the Large Synoptic Survey Telescope (LSST). To simulate these surveys, we use the realistic mock catalogues introduced in the first paper of this series. We detected galaxy clusters using the Bayesian Cluster Finder in the mock catalogues. We then modelled and calibrated the total cluster stellar mass observable–theoretical mass (M^∗_(CL)—M_h) relation using a power-law model, including a possible redshift evolution term. We find a moderate scatter of σM^∗_(CL)|M_h) of 0.124, 0.135 and 0.136 dex for Euclid-Optimistic, Euclid-Pessimistic and LSST, respectively, comparable to other work over more limited ranges of redshift. Moreover, the three data sets are consistent with negligible evolution with redshift, in agreement with observational and simulation results in the literature. We find that Euclid-Optimistic will be able to detect clusters with >80 per cent completeness and purity down to 8 × 10^(13) h^(−1) M_⊙ up to z < 1. At higher redshifts, the same completeness and purity are obtained with the larger mass threshold of 2 × 10^(14) h^(−1) M_⊙ up to z = 2. The Euclid-Pessimistic selection function has a similar shape with ∼10 per cent higher mass limit. LSST shows ∼5 per cent higher mass limit than Euclid-Optimistic up to z < 0.7 and increases afterwards, reaching a value of 2 × 10^(14) h^(−1) M_⊙ at z = 1.4. Similar selection functions with only 80 per cent completeness threshold have also been computed. The complementarity of these results with selection functions for surveys in other bands is discussed

    Bayesian Cluster Finder: Clusters in the CFHTLS Archive Research Survey

    Full text link
    The detection of galaxy clusters in present and future surveys enables measuring mass-to-light ratios, clustering properties, galaxy cluster abundances and therefore, constraining cosmological parameters. We present a new technique for detecting galaxy clusters, which is based on the Matched Filter Algorithm from a Bayesian point of view. The method is able to determine the position, redshift and richness of the cluster through the maximization of a filter depending on galaxy luminosity, density and photometric redshift combined with a galaxy cluster prior that accounts for color-magnitude relations and BCG-redshift relation. We tested the algorithm through realistic mock galaxy catalogs, revealing that the detections are 100% complete and 80% pure for clusters up to z 20 (Abell Richness \sim0, M4×1014M\sim4\times10^{14} M_{\odot}). The completeness and purity remains approximately the same if we do not include the prior information, implying that this method is able to detect galaxy cluster with and without a well defined red sequence. We applied the algorithm to the CFHTLS Archive Research Survey (CARS) data, recovering similar detections as previously published using the same or deeper data plus additional clusters which appear to be real.Comment: Accepted for publication in MNRAS; 17 pages, 38 figure

    Next Generation Cosmology: Constraints from the Euclid Galaxy Cluster Survey

    Get PDF
    We study the characteristics of the galaxy cluster samples expected from the European Space Agency's Euclid satellite and forecast constraints on cosmological parameters describing a variety of cosmological models. The method used in this paper, based on the Fisher Matrix approach, is the same one used to provide the constraints presented in the Euclid Red Book (Laureijs et al.2011). We describe the analytical approach to compute the selection function of the photometric and spectroscopic cluster surveys. Based on the photometric selection function, we forecast the constraints on a number of cosmological parameter sets corresponding to different extensions of the standard LambdaCDM model. The dynamical evolution of dark energy will be constrained to Delta w_0=0.03 and Delta w_a=0.2 with free curvature Omega_k, resulting in a (w_0,w_a) Figure of Merit (FoM) of 291. Including the Planck CMB covariance matrix improves the constraints to Delta w_0=0.02, Delta w_a=0.07 and a FoM=802. The amplitude of primordial non-Gaussianity, parametrised by f_NL, will be constrained to \Delta f_NL ~ 6.6 for the local shape scenario, from Euclid clusters alone. Using only Euclid clusters, the growth factor parameter \gamma, which signals deviations from GR, will be constrained to Delta \gamma=0.02, and the neutrino density parameter to Delta Omega_\nu=0.0013 (or Delta \sum m_\nu=0.01). We emphasise that knowledge of the observable--mass scaling relation will be crucial to constrain cosmological parameters from a cluster catalogue. The Euclid mission will have a clear advantage in this respect, thanks to its imaging and spectroscopic capabilities that will enable internal mass calibration from weak lensing and the dynamics of cluster galaxies. This information will be further complemented by wide-area multi-wavelength external cluster surveys that will already be available when Euclid flies. [Abridged]Comment: submitted to MNRA

    Seed ecology of European mesic meadows

    Get PDF
    Background and Aims: European mesic meadows are semi-natural open habitats of high biodiversity and an essential part of European landscapes. These species-rich communities can be a source of seed mixes for ecological restoration, urban greening and rewilding. However, limited knowledge of species germination traits is a bottleneck to the development of a competitive native seed industry. Here, we synthesize the seed ecology of mesic meadows. Methods: We combined our own experimental data with data obtained from databases to create a combined dataset containing 2005 germination records of 90 plant species from 31 European countries. We performed a Bayesian meta-analysis of this dataset to test the seed germination response to environmental cues including scarification, stratification, temperature, alternating temperature and light. We also used multivariate ordination to check the relationship between seed traits (germination and morphology) and species ecological preferences, and to compare the seed ecology of mesic meadows with that of other herbaceous plant communities from the same geographic area. Key Results: The seed ecology of mesic meadows is characterized by (1) high seed germinability when compared with other herbaceous plant communities; (2) low correspondence between seed traits and species ecological preferences; and (3) a deep phylogenetic separation between the two major families, Poaceae and Fabaceae. Poaceae produce many light seeds that respond to gap-detecting germination cues (alternating temperatures and light); Fabaceae produce fewer heavy seeds, which need scarification to break their physical dormancy. Conclusions: High germinability of meadow seeds will reduce their capacity to form persistent seed banks, resulting in dispersal limitations to passive regeneration. For centuries, human activities have shaped the regeneration of meadows, leading to a loss of seed dormancy and decoupling seeds from seasonal cycles, as has been found in many domesticated species. The same anthropic processes that have shaped semi-natural mesic meadows have left them dependent on continued human intervention for their regeneration, highlighting the importance of active restoration via seed supply

    Evolution of BCGs structural parameters in the last \sim6 Gyr: feedback processes versus merger events

    Full text link
    We present results on the evolution in the last 6 Gyr of the structural parameters of two samples of brightest cluster galaxies (BCGs). The nearby sample of BCGs consist on 69 galaxies from the WINGS survey spanning a redshift range of 0.04<<z<<0.07. The intermediate redshift (0.3<<z<<0.6) sample is formed by 20 BCGs extracted from the Hubble Space Telescope archive. Both samples have similar spatial resolution and their host clusters have similar X-ray luminosities. We report an increase in the size of the BCGs from intermediate to local redshift. However, we do not detect any variation in the S\'ersic shape parameter in both samples. These results are proved to be robust since the observed tendencies are model independent. We also obtain significant correlations between some of the BCGs parameters and the main properties of the host clusters. More luminous, larger and centrally located BCGs are located in more massive and dominant galaxy clusters. These facts indicate that the host galaxy cluster has played an important role in the formation of their BCGs. We discuss the possible mechanisms that can explain the observed evolution of the structural parameters of the BCGs. We conclude that the main mechanisms that can explain the increase in size and the non-evolution in the S\'ersic shape parameter of the BCGs in the last 6 Gyr are feedback processes. This result disagrees with semi-analytical simulation results supporting that merging processes are the main responsible for the evolution of the BCGs until the present epoch.Comment: Accepted for publication in ApJ; 17 pages, 7 figures; 10 table

    The bright galaxy population of five medium redshift clusters. II. Quantitative Galaxy Morphology

    Full text link
    Aims: Following the study already presented in our previous paper, based on the Nordic Optical Telescope (NOT) sample, which consists of five clusters of galaxies within the redshift range 0.18 \leq z \leq 0.25, imaged in the central 0.5-2 Mpc in very good seeing conditions, we have studied the quantitative morphology of their bright galaxy population Methods: We have analyzed the surface brightness profiles of the galaxy population in those clusters. Previously, we have performed simulations in order to check the reliability of the fits. We have also derived a quantitative morphological classification. Results: The structural parameters derived from these analysis have been analyzed. We have obtained that the structural parameters of E/S0 galaxies are similar to those showed by galaxies in low redshift clusters. However, the disc scales are different. In particular, the scales of the discs of galaxies at medium redshift clusters are statistically different than those located in similar galaxies in the Coma cluster. But, the scales of the discs of galaxies in medium redshift clusters are similar to nearby field galaxies. Conclusions: The results suggest that the evolution of the disc component of galaxies in clusters is faster than in field ones. Mechanisms like galaxy harassment showing timescales of 1\sim 1Gyr could be the responsible of this disc scale evolution. This indicates that spiral galaxies in clusters have suffered a strong evolution in the last 2.5 Gyr or that Coma is in some way anomalous.Comment: 13 pages, 10 figures, Accepted for publication in A&

    The response to iron supplementation of pregnant women with the haemoglobin genotype AA or AS

    Get PDF
    The influence of haemoglobin genotype on the response to iron supplementation was studied in a randomized, double blind, placebo-controlled trial involving 497 multigravid pregnant women from a rural area of The Gambia. Women were randomly allocated to receive either oral iron (60mg elemental iron per day) or placebo. At 36 weeks of pregnancy, women who had received oral iron during pregnancy had higher mean haemoglobin, packed cell volume, plasma iron and ferritin levels than did women who received placebo. Iron supplementation of pregnant women with the AA haemoglobin genotype also resulted in increases in the packed cell volume (PCV) and haemoglobin level measured after delivery, and in the birth weight of the infant. However, in AS women PCV and haemoglobin level at delivery were lower in the supplemented group and supplementation was also associated with reduced birth weights. In malaria endemic areas, pregnant women with the haemoglobin genotype AS may not benefit from iron supplementation during pregnanc

    The evolution of Balmer jump selected galaxies in the ALHAMBRA survey

    Full text link
    We present a new color-selection technique, based on the Bruzual & Charlot models convolved with the bands of the ALHAMBRA survey, and the redshifted position of the Balmer jump to select star-forming galaxies in the redshift range 0.5 < z < 1.5. These galaxies are dubbed Balmer jump Galaxies BJGs. We apply the iSEDfit Bayesian approach to fit each detailed SED and determine star-formation rate (SFR), stellar mass, age and absolute magnitudes. The mass of the haloes where these samples reside are found via a clustering analysis. Five volume-limited BJG sub-samples with different mean redshifts are found to reside in haloes of median masses 1012.5±0.2M\sim 10^{12.5 \pm 0.2} M_\odot slightly increasing toward z=0.5. This increment is similar to numerical simulations results which suggests that we are tracing the evolution of an evolving population of haloes as they grow to reach a mass of 1012.7±0.1M\sim 10^{12.7 \pm 0.1} M_\odot at z=0.5. The likely progenitors of our samples at z\sim3 are Lyman Break Galaxies, which at z\sim2 would evolve into star-forming BzK galaxies, and their descendants in the local Universe are elliptical galaxies.Hence, this allows us to follow the putative evolution of the SFR, stellar mass and age of these galaxies. From z\sim1.0 to z\sim0.5, the stellar mass of the volume limited BJG samples nearly does not change with redshift, suggesting that major mergers play a minor role on the evolution of these galaxies. The SFR evolution accounts for the small variations of stellar mass, suggesting that star formation and possible minor mergers are the main channels of mass assembly.Comment: 14 pages, 10 figures. Submitted to A&A. It includes first referee's comments. Abstract abridged due to arXiv requirement

    Clinical-decision criteria to identify recurrent diabetic macular edema patients suitable for fluocinolone acetonide implant therapy (Iluvien®) and follow-up considerations/ recommendations

    Get PDF
    Current management of diabetic macular edema (DME) predominantly involves treatment with short-acting intravitreal injections of anti-vascular endothelial growth factors (anti-VEGFs) and/or corticosteroids; however, short-acting therapies (lasting between 1 and 6 months) require frequent injections to maintain efficacy, meaning a considerable treatment burden for diabetic patients with multiple comorbidities. Continuous injections needed in some cases are an economic burden for patients/healthcare system, so real-life clinical practice tends to adopt a reactive approach, ie, watch and wait for worsening symptoms, which consequently increases the risk of undertreatment and edema recurrence. On March 7th 2019, a group of experts in retinal medicine and surgery held a roundtable meeting in Madrid, Spain to discuss how to (1) optimize clinical outcomes through earlier use of fluocinolone acetonide (FAc) implant (ILUVIEN®) in patients with persistent or recurrent DME despite therapy; and, (2) to provide guidance to assist physicians in deciding which patients should be treated with ILUVIEN. In this regard, a 36-month follow-up consensus protocol is presented. In conclusion, patients that achieve a complete or partial anatomical, and preferably functional, response following one or two intravitreal dexametha-sone implants, but with recurrence of edema after 3–4 months, are deemed by the authors most likely to benefit from ILUVIEN, and the switch to FAc implant should not be delayed more than 12 months after the initiation of at least the first dexamethasone implant
    corecore