24 research outputs found

    Taste Neophobia and c-Fos Expression in the Rat Brain

    Get PDF
    Taste neophobia refers to a reduction in consumption of a novel taste relative to when it is familiar. To gain more understanding of the neural basis of this phenomenon, the current study examined whether a novel taste (0.5% saccharin) supports a different pattern of c-Fos expression than the same taste when it is familiar. Results revealed that the taste of the novel saccharin solution evoked more Fos immunoreactivity than the familiar taste of saccharin in the basolateral region of the amygdala, central nucleus of the amygdala, gustatory portion of the thalamus, and the gustatory insular cortex. No such differential expression was found in the other examined areas, including the bed nucleus of stria terminalis, medial amygdala, and medial parabrachial nucleus. The present results are discussed with respect to a forebrain taste neophobia system

    Chaste: an open source C++ library for computational physiology and biology

    Get PDF
    Chaste - Cancer, Heart And Soft Tissue Environment - is an open source C++ library for the computational simulation of mathematical models developed for physiology and biology. Code development has been driven by two initial applications: cardiac electrophysiology and cancer development. A large number of cardiac electrophysiology studies have been enabled and performed, including high performance computational investigations of defibrillation on realistic human cardiac geometries. New models for the initiation and growth of tumours have been developed. In particular, cell-based simulations have provided novel insight into the role of stem cells in the colorectal crypt. Chaste is constantly evolving and is now being applied to a far wider range of problems. The code provides modules for handling common scientific computing components, such as meshes and solvers for ordinary and partial differential equations (ODEs/PDEs). Re-use of these components avoids the need for researchers to "re-invent the wheel" with each new project, accelerating the rate of progress in new applications. Chaste is developed using industrially-derived techniques, in particular test-driven development, to ensure code quality, re-use and reliability. In this article we provide examples that illustrate the types of problems Chaste can be used to solve, which can be run on a desktop computer. We highlight some scientific studies that have used or are using Chaste, and the insights they have provided. The source code, both for specific releases and the development version, is available to download under an open source Berkeley Software Distribution (BSD) licence at http://www.cs.ox.ac.uk/chaste, together with details of a mailing list and links to documentation and tutorials

    Economic Analysis of Labor Markets and Labor Law: An Institutional/Industrial Relations Perspective

    Get PDF

    Functional connectivity underlying hedonic response to food in female adolescents with atypical AN: the role of somatosensory and salience networks.

    Get PDF
    Atypical anorexia nervosa (AN) usually occurs during adolescence. Patients are often in the normal-weight range at diagnosis; however, they often present with signs of medical complications and severe restraint over eating, body dissatisfaction, and low self-esteem. We investigated functional circuitry underlying the hedonic response in 28 female adolescent patients diagnosed with atypical AN and 33 healthy controls. Participants were shown images of food with high (HC) or low (LC) caloric content in alternating blocks during functional MRI. The HC > LC contrast was calculated. Based on the previous literature on full-threshold AN, we hypothesized that patients would exhibit increased connectivity in areas involved in sensory processing and bottom-up responses, coupled to increased connectivity from areas related to top-down inhibitory control, compared with controls. Patients showed increased connectivity in pathways related to multimodal somatosensory processing and memory retrieval. The connectivity was on the other hand decreased in patients in salience and attentional networks, and in a wide cerebello-occipital network. Our study was the first investigation of food-related neural response in atypical AN. Our findings support higher somatosensory processing in patients in response to HC food images compared with controls, however HC food was less efficient than LC food in engaging patients' bottom-up salient responses, and was not associated with connectivity increases in inhibitory control regions. These findings suggest that the psychopathological mechanisms underlying food restriction in atypical AN differ from full-threshold AN. Elucidating the mechanisms underlying the development and maintenance of eating behavior in atypical AN might help designing specific treatment strategies

    Role of the Gustatory Thalamus in Taste Learning

    No full text
    The present study re-examined the involvement of the gustatory thalamus (GT) in the acquisition of drug- and toxin-induced conditioned taste aversions (CTAs) using a standardized procedure involving 15-min taste trials in rats injected with morphine (Experiment 1), lithium chloride (Experiment 2) or amphetamine (Experiment 3). Contrary to previous results, GT lesions did not eliminate drug-induced CTAs. Rather, GT-lesioned rats acquired aversions of comparable magnitude to non-lesioned subjects but from an elevated intake on the first conditioning trial. A similar pattern of lesion effects was found in the acquisition of an illness-induced CTA. Thus, we conclude that GT lesions do not differentially influence CTAs conditioned with drugs or toxins. The lesion-induced elevated intake of a novel tastant confirms an unappreciated role for the GT in taste neophobia

    Inhibiting gustatory thalamus or medial amygdala has opposing effects on taste neophobia

    No full text
    Taste neophobia is a feeding system defense mechanism that limits consumption of an unknown, and therefore potentially dangerous, edible until the post-ingestive consequences are experienced. We found that transient pharmacological inhibition (induced with the GABA agonists baclofen and muscimol) of the gustatory thalamus (GT; Experiment 1), but not medial amygdala (MeA; Experiment 2), during exposure to a novel saccharin solution attenuated taste neophobia. In Experiment 3 we found that inhibition of MeA neurons (induced with the chemogenetic receptor hM4DGi) enhanced the expression of taste neophobia whereas excitation of MeA neurons (with hM3DGq) had no influence of taste neophobia. Overall, these results refine the temporal involvement of the GT in the occurrence of taste neophobia and support the hypothesis that neuronal excitation in the GT is necessary for taste neophobia. Conversely, we show that chemogenetically, but not pharmacologically, inhibiting MeA neurons is sufficient to exaggerate the expression of taste neophobia

    Reduced palatability in drug-induced taste aversion: II. Aversive and rewarding unconditioned stimuli.

    No full text
    Drugs of abuse are known to reduce intake of a taste conditioned stimulus (CS), a behavioral response sometimes seen as paradoxical because the same drugs also serve as rewards in other behavioral procedures. In the present study we compared patterns of intake and palatability (assessed using microstructural analysis of licking) for a standard saccharin CS paired with: lithium chloride, morphine, amphetamine, or sucrose. We found that morphine and amphetamine, like lithium-induced illness, each suppressed CS intake and caused a reduction in saccharin palatability. Sucrose, a rewarding stimulus, did not reduce the palatability of the saccharin CS. We interpret these finds as evidence that drugs of abuse induce conditioned taste aversions

    The effects of amygdala and cortical inactivation on taste neophobia

    No full text
    The current study examined the effects of transient inactivation of the basolateral amygdala (BLA; Experiment 1) and gustatory cortex (GC; Experiment 2) on the expression of taste neophobia and its recovery. We found that inactivation (induced by infusions of baclofen/muscimol) of each structure before exposure to a novel saccharin (0.5%) solution elevated intake on Trial 1 (i.e., taste neophobia was attenuated) and, surprisingly, decreased intake on Trial 2. It seems unlikely that this intake reduction on Trial 2 can be attributed to taste aversion learning caused by drug infusions because in the subsequent experiments with the same set of the implanted animals, the rats did not decrease intake when baclofen/muscimol was infused after taste presentation on Trial 1. The latter result suggests that BLA or GC inactivation that attenuates taste neophobia may also impair memory consolidation of a safe taste experience

    Role of the Insular Cortex in Morphine-Induced Conditioned Taste Avoidance

    No full text
    The present study investigated the role of the insular cortex (IC) in morphine-induced conditioned taste avoidance. The results of Experiment 1 revealed that IC lesions impaired taste neophobia, retarded acquisition of conditioned saccharin avoidance and apparently attenuated the magnitude of that response at asymptote. Using neurologically intact subjects, Experiment 2 established that a safe and familiar saccharin stimulus supports substantially weaker conditioned avoidance at asymptote than does a potentially dangerous and novel saccharin stimulus. This pattern of results does not support the hypothesis that IC lesions disrupt the learning mechanism responsible for morphine-induced conditioned taste avoidance. The data are, however, consistent with the hypothesis that IC lesions impair the perception of the danger and/or novelty of the taste stimulus
    corecore