25 research outputs found

    Comparative phylogenetic analysis of small GTP-binding genes of model legume plants and assessment of their roles in root nodules

    Get PDF
    Small GTP-binding genes play an essential regulatory role in a multitude of cellular processes such as vesicle-mediated intracellular trafficking, signal transduction, cytoskeletal organization, and cell division in plants and animals. Medicago truncatula and Lotus japonicus are important model plants for studying legume-specific biological processes such as nodulation. The publicly available online resources for these plants from websites such as http://www.ncbi.nih.gov, http://www.medicago.org, http://www.tigr.org, and related sites were searched to collect nucleotide sequences that encode GTP-binding protein homologues. A total of 460 small GTPase sequences from several legume species including Medicago and Lotus, Arabidopsis, human, and yeast were phyletically analysed to shed light on the evolution and functional characteristics of legume-specific homologues. One of the main emphases of this study was the elucidation of the possible involvement of some members of small GTPase homologues in the establishment and maintenance of symbiotic associations in root nodules of legumes. A high frequency of vesicle-mediated trafficking in nodules led to the idea of a probable subfunctionalization of some members of this family in legumes. As a result of the analyses, a group of 10 small GTPases that are likely to be mainly expressed in nodules was determined. The sequences determined as a result of this study could be used in more detailed molecular genetic analyses such as creation of RNA inteference silencing mutants for further clarification of the role of GTPases in nodulation. This study will also assist in furthering our understanding of the evolutionary history of small GTPases in legume species

    Biomécanique de l'élongation de l'axe antéro-postérieur chez l'embryon de poulet

    Get PDF
    In vertebrates, the elongation of the anteroposterior axis is a crucial step during embryonic development as it results in the establishment of the basic body plan. A previous study highlighted the importance of the presomitic mesoderm (PSM) in elongation and showed that a gradient of random cell motility along the anteroposterior axis is necessary for proper elongation of the chicken embryo. It was proposed that a gradient of random cell motility, downstream of a morphogen gradient, drives axis extension. To date, the potential interaction between well-established molecular signaling and physical mechanisms involved in axis elongation remains largely unexplored. In particular, several mechanical questions need to be addressed. First, can the cell motility gradient lead to PSM extension? Second, is the force generated by PSM extension capable of promoting axis elongation? Third, how is PSM extension mechanically coupled with the elongation of all embryonic tissues? In order to tackle these questions, a better description of the mechanical properties of the embryonic tissues is required. Moreover, to assess specific tissues' contribution to elongation, a quantitative analysis of their force production is needed. In this Ph.D. thesis, we measure how the viscoelastic properties of both the PSM and the neural tube vary along the anteroposterior axis. We also demonstrate that isolated PSM explants are capable of autonomous elongation and we measure their contribution to the total force production in the embryo.Chez les Vertébrés, le plan d’organisation du corps est mis en place lors de l’élongation de l’axe antéro-postérieur. L’importance du mésoderme pré-somitique (PSM) dans l’élongation a précédemment été démontrée chez l’embryon de poulet. Il a été proposé qu’un gradient de motilité cellulaire aléatoire, contrôlé par un gradient de morphogène, était nécessaire à l’élongation de l’axe. À ce jour, les interactions entre un profil de signalisation moléculaire bien connu et un mécanisme physique d’élongation restent à explorer. En particulier, plusieurs questions de mécanique doivent être étudiées. Tout d’abord, un gradient de motilité cellulaire peut-il provoquer l’extension du PSM ? Ensuite, la force générée par l’extension du PSM peut-elle être à l’origine de l’élongation de l’axe ? Enfin, comment l’extension du PSM est-elle couplée mécaniquement à l’élongation des autres tissus ? Pour répondre à ces questions, une meilleure description des propriétés mécaniques des tissus embryonnaires est nécessaire. De plus, afin d’estimer la contribution des différents tissus au processus d’élongation, une analyse quantitative de la production de force de ces tissus est essentielle. Dans cette thèse de doctorat, nous présentons le profil des propriétés visco-élastiques du PSM et du tube neural le long de l’axe. Nous démontrons également que des PSM isolés sont capables de s’allonger de manière autonome et nous mesurons leur contribution à la force totale d’élongation

    Biomechanics of anteroposterior axis elongation in the chicken embryo

    No full text
    Chez les Vertébrés, le plan d’organisation du corps est mis en place lors de l’élongation de l’axe antéro-postérieur. L’importance du mésoderme pré-somitique (PSM) dans l’élongation a précédemment été démontrée chez l’embryon de poulet. Il a été proposé qu’un gradient de motilité cellulaire aléatoire, contrôlé par un gradient de morphogène, était nécessaire à l’élongation de l’axe. À ce jour, les interactions entre un profil de signalisation moléculaire bien connu et un mécanisme physique d’élongation restent à explorer. En particulier, plusieurs questions de mécanique doivent être étudiées. Tout d’abord, un gradient de motilité cellulaire peut-il provoquer l’extension du PSM ? Ensuite, la force générée par l’extension du PSM peut-elle être à l’origine de l’élongation de l’axe ? Enfin, comment l’extension du PSM est-elle couplée mécaniquement à l’élongation des autres tissus ? Pour répondre à ces questions, une meilleure description des propriétés mécaniques des tissus embryonnaires est nécessaire. De plus, afin d’estimer la contribution des différents tissus au processus d’élongation, une analyse quantitative de la production de force de ces tissus est essentielle. Dans cette thèse de doctorat, nous présentons le profil des propriétés visco-élastiques du PSM et du tube neural le long de l’axe. Nous démontrons également que des PSM isolés sont capables de s’allonger de manière autonome et nous mesurons leur contribution à la force totale d’élongation.In vertebrates, the elongation of the anteroposterior axis is a crucial step during embryonic development as it results in the establishment of the basic body plan. A previous study highlighted the importance of the presomitic mesoderm (PSM) in elongation and showed that a gradient of random cell motility along the anteroposterior axis is necessary for proper elongation of the chicken embryo. It was proposed that a gradient of random cell motility, downstream of a morphogen gradient, drives axis extension. To date, the potential interaction between well-established molecular signaling and physical mechanisms involved in axis elongation remains largely unexplored. In particular, several mechanical questions need to be addressed. First, can the cell motility gradient lead to PSM extension? Second, is the force generated by PSM extension capable of promoting axis elongation? Third, how is PSM extension mechanically coupled with the elongation of all embryonic tissues? In order to tackle these questions, a better description of the mechanical properties of the embryonic tissues is required. Moreover, to assess specific tissues' contribution to elongation, a quantitative analysis of their force production is needed. In this Ph.D. thesis, we measure how the viscoelastic properties of both the PSM and the neural tube vary along the anteroposterior axis. We also demonstrate that isolated PSM explants are capable of autonomous elongation and we measure their contribution to the total force production in the embryo

    Biomechanics of anteroposterior axis elongation in the chicken embryo

    No full text
    Chez les Vertébrés, le plan d’organisation du corps est mis en place lors de l’élongation de l’axe antéro-postérieur. L’importance du mésoderme pré-somitique (PSM) dans l’élongation a précédemment été démontrée chez l’embryon de poulet. Il a été proposé qu’un gradient de motilité cellulaire aléatoire, contrôlé par un gradient de morphogène, était nécessaire à l’élongation de l’axe. À ce jour, les interactions entre un profil de signalisation moléculaire bien connu et un mécanisme physique d’élongation restent à explorer. En particulier, plusieurs questions de mécanique doivent être étudiées. Tout d’abord, un gradient de motilité cellulaire peut-il provoquer l’extension du PSM ? Ensuite, la force générée par l’extension du PSM peut-elle être à l’origine de l’élongation de l’axe ? Enfin, comment l’extension du PSM est-elle couplée mécaniquement à l’élongation des autres tissus ? Pour répondre à ces questions, une meilleure description des propriétés mécaniques des tissus embryonnaires est nécessaire. De plus, afin d’estimer la contribution des différents tissus au processus d’élongation, une analyse quantitative de la production de force de ces tissus est essentielle. Dans cette thèse de doctorat, nous présentons le profil des propriétés visco-élastiques du PSM et du tube neural le long de l’axe. Nous démontrons également que des PSM isolés sont capables de s’allonger de manière autonome et nous mesurons leur contribution à la force totale d’élongation.In vertebrates, the elongation of the anteroposterior axis is a crucial step during embryonic development as it results in the establishment of the basic body plan. A previous study highlighted the importance of the presomitic mesoderm (PSM) in elongation and showed that a gradient of random cell motility along the anteroposterior axis is necessary for proper elongation of the chicken embryo. It was proposed that a gradient of random cell motility, downstream of a morphogen gradient, drives axis extension. To date, the potential interaction between well-established molecular signaling and physical mechanisms involved in axis elongation remains largely unexplored. In particular, several mechanical questions need to be addressed. First, can the cell motility gradient lead to PSM extension? Second, is the force generated by PSM extension capable of promoting axis elongation? Third, how is PSM extension mechanically coupled with the elongation of all embryonic tissues? In order to tackle these questions, a better description of the mechanical properties of the embryonic tissues is required. Moreover, to assess specific tissues' contribution to elongation, a quantitative analysis of their force production is needed. In this Ph.D. thesis, we measure how the viscoelastic properties of both the PSM and the neural tube vary along the anteroposterior axis. We also demonstrate that isolated PSM explants are capable of autonomous elongation and we measure their contribution to the total force production in the embryo

    Dynamics of primitive streak regression controls the fate of neuromesodermal progenitors in the chicken embryo

    No full text
    International audienceIn classical descriptions of vertebrate development, the segregation of the three embryonic germ layers completes by the end of gastrulation. Body formation then proceeds in a head to tail fashion by progressive deposition of lineage-committed progenitors during regression of the primitive streak (PS) and tail bud (TB). The identification by retrospective clonal analysis of a population of neuromesodermal progenitors (NMPs) contributing to both musculoskeletal precursors (paraxial mesoderm) and spinal cord during axis formation challenged these notions. However, classical fate mapping studies of the PS region in amniotes have so far failed to provide direct evidence for such bipotential cells at the single-cell level. Here, using lineage tracing and single-cell RNA sequencing in the chicken embryo, we identify a resident cell population of the anterior PS epiblast, which contributes to neural and mesodermal lineages in trunk and tail. These cells initially behave as monopotent progenitors as classically described and only acquire a bipotential fate later, in more posterior regions. We show that NMPs exhibit a conserved transcriptomic signature during axis elongation but lose their epithelial characteristicsin the TB. Posterior to anterior gradients of convergence speed and ingression along the PS lead to asymmetric exhaustion of PS mesodermal precursor territories. Through limited ingression and increased proliferation, NMPs are maintained and amplified as a cell population which constitute the main progenitors in the TB. Together, our studies provide a novel understanding of the PS and TB contribution through the NMPs to the formation of the body of amniote embryos

    5(4H)-Oxazolones as Intermediates in the Carbodiimide-and Cyanamide-Promoted Peptide Activations in Aqueous Solution

    No full text
    International audienceThe formation of biopolymers in prebiotic environments is still unresolved regarding nucleic acids and functional peptides. Peptide function especially requires proper folding and hence sufficient lengths. In 1969, Cavadore and Previero1 observed that the EDC-mediated (EDC=1-ethyl, 3-(3-dimethylaminopropyl)carbodiimide hydrochloride) α-amino acid polymerization in water is significantly improved when N-acylated amino acids are introduced as initiators. Obviously, EDC is highly unlikely to have been abiotically formed but there are indications in the literature that underivatized carbodiimide HN[DOUBLE BOND]C[DOUBLE BOND]NH is involved as an intermediate in reactions of cyanamide,2 a prebiotically plausible reagent, and dicyandiamide is reported to behave similarly as carbodiimides.3 The behavior of N-acylamino acids as polymerization initiators was explained in the original work1 by an inhibition of activation owing to the greater acidity of free α-amino acids (pKA≈2.3) compared to C-terminal carboxy groups in peptides (pKA≈3.7). However, alternative explanations could be proposed

    RegFus: A toolbox for distributed multi-view image registration and fusion

    No full text
    Multi-view and multi-tile light (sheet) microscopy techniques produce large image datasets that are unaligned in space, time and channels. We present a collection of algorithm implementations and scripts to register and fuse such datasets in 2-5d, including e.g. group registration and multi-view deconvolution. Based on the scientific python stack and leveraging dask for chunked and distributed image processing, RegFus enables the efficient reconstruction of large multi-view datasets with low memory requirements, allowing to make use of GPUs and distributed computing. Visualization in napari helps to guide and troubleshoot the reconstruction process.</p
    corecore