8 research outputs found
MAGIC and Fermi-LAT gamma-ray results on unassociated HAWC sources
The HAWC Collaboration released the 2HWC catalogue of TeV sources, in which 19 show no association with any known high-energy (HE; E greater than or similar to 10 GeV) or very-high-energy (VHE; E greater than or similar to 300 GeV) sources. This catalogue motivated follow-up studies by both the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) and Fermi-LAT (Large Area Telescope) observatories with the aim of investigating gamma-ray emission over a broad energy band. In this paper, we report the results from the first joint work between High Altitude Water Cherenkov (HAWC), MAGIC, and Fermi-LAT on three unassociated HAWC sources: 2HWC J2006+341, 2HWC J1907+084*, and 2HWC J1852+013*. Although no significant detection was found in the HE and VHE regimes, this investigation shows that a minimum 1 degrees extension (at 95 per cent confidence level) and harder spectrum in the GeV than the one extrapolated from HAWC results are required in the case of 2HWC J1852+013*, whilst a simply minimum extension of 0.16 degrees (at 95 per cent confidence level) can already explain the scenario proposed by HAWC for the remaining sources. Moreover, the hypothesis that these sources are pulsar wind nebulae is also investigated in detail
OBSERVATION OF SMALL-SCALE ANISOTROPY IN THE ARRIVAL DIRECTION DISTRIBUTION OF TeV COSMIC RAYS WITH HAWC
US National Science Foundation (NSF); US Department of Energy Office of High- Energy Physics; Laboratory Directed Research and Development (LDRD) program of Los Alamos National Laboratory; Consejo Nacional de Ciencia y Tecnologia (CONACyT), Mexico [55155, 105666, 122331, 132197]; Red de Fisica de Altas Energias, Mexico, DGAPAUNAM [IG100414- 3, IN108713, IN121309, IN115409, IN113612]; VIEP-BUAP [161-EXC-2011]; University of Wisconsin Alumni Research Foundation; Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory; Luc Binette Foundation UNA
SEARCH FOR GAMMA-RAYS FROM THE UNUSUALLY BRIGHT GRB 130427A WITH THE HAWC GAMMA-RAY OBSERVATORY
US National Science Foundation (NSF); US Department of Energy Office of High-Energy Physics; Laboratory Directed Research and Development (LDRD) program of Los Alamos National Laboratory; Consejo Nacional de Ciencia y Tecnologia (CONACyT), Mexico [55155, 105666, 122331, 132197]; Red de Fisica de Altas Energias, Mexico; DGAPA-UNAM [IG100414-3, IN108713, IN121309, IN115409, IN113612]; VIEP-BUAP [161-EXC-2011]; University of Wisconsin Alumni Research Foundation; Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory; Luc Binette Foundation UNAM Postdoctoral Fellowship progra
Sensitivity of HAWC to high-mass dark matter annihilations
The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view detector sensitive to gamma rays of 100 GeV to a few hundred TeV. Located in central Mexico at 19 degrees North latitude and 4100 m above sea level, HAWC will observe gamma rays and cosmic rays with an array of water Cherenkov detectors. The full HAWC array is scheduled to be operational in Spring 2015. In this paper, we study the HAWC sensitivity to the gamma-ray signatures of high-mass (multi-TeV) dark matter annihilation. The HAWC observatory will be sensitive to diverse searches for dark matter annihilation, including annihilation from extended dark matter sources, the diffuse gamma-ray emission from dark matter annihilation, and gamma-ray emission from nonluminous dark matter subhalos. Here we consider the HAWC sensitivity to a subset of these sources, including dwarf galaxies, the M31 galaxy, the Virgo cluster, and the Galactic center. We simulate the HAWC response to gamma rays from these sources in several well-motivated dark matter annihilation channels. If no gamma-ray excess is observed, we show the limits HAWC can place on the dark matter cross section from these sources. In particular, in the case of dark matter annihilation into gauge bosons, HAWC will be able to detect a narrow range of dark matter masses to cross sections below thermal. HAWC should also be sensitive to nonthermal cross sections for masses up to nearly 1000 TeV. The constraints placed by HAWC on the dark matter cross section from known sources should be competitive with current limits in the mass range where HAWC has similar sensitivity. HAWC can additionally explore higher dark matter masses than are currently constrained
Data acquisition architecture and online processing system for the HAWC gamma-ray observatory
The High Altitude Water Cherenkov observatory (HAWC) is an air shower array devised for TeV gamma-ray astronomy. HAWC is located at an altitude of 4100 m a.s.l. in Sierra Negra, Mexico. HAWC consists of 300 Water Cherenkov Detectors, each instrumented with 4 photomultiplier tubes (PMTs). HAWC re-uses the Front-End Boards from the Milagro experiment to receive the PMT signals. These boards are used in combination with Time to Digital Converters (TDCs) to record the time and the amount of light in each PMT hit (light flash). A set of VME TDC modules (128 channels each) is operated in a continuous (dead time free) mode. The TDCs are read out via the VME bus by Single-Board Computers (SBCs), which in turn are connected to a gigabit Ethernet network. The complete system produces approximate to 500 MB/s of raw data. A high-throughput data processing system has been designed and built to enable real-time data analysis. The system relies on off-the-shelf hardware components, an open-source software technology for data transfers (ZeroMQ) and a custom software framework for data analysis (AERIE). Multiple trigger and reconstruction algorithms can be combined and run on blocks of data in a parallel fashion, producing a set of output data streams which can be analyzed in real time with minimal latency (<5 s). This paper provides an overview of the hardware set-up and an in-depth description of the software design, covering both the TDC data acquisition system and the real-time data processing system. The performance of these systems is also discussed. (C) 2018 Elsevier B.V. All rights reserved
Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A
Previous detections of individual astrophysical sources of neutrinos are limited to the Sun and the supernova 1987A, whereas the origins of the diffuse flux of high-energy cosmic neutrinos remain unidentified. On 22 September 2017, we detected a high-energy neutrino, IceCube-170922A, with an energy of ~290 teraâelectron volts. Its arrival direction was consistent with the location of a known Îł-ray blazar, TXS 0506+056, observed to be in a flaring state. An extensive multiwavelength campaign followed, ranging from radio frequencies to Îł-rays. These observations characterize the variability and energetics of the blazar and include the detection of TXS 0506+056 in very-high-energy Îł-rays. This observation of a neutrino in spatial coincidence with a Îł-rayâemitting blazar during an active phase suggests that blazars may be a source of high-energy neutrinos