8 research outputs found

    A robust broadband fat suppressing phaser T2 preparation module for cardiac magnetic resonance imaging at 3T

    Full text link
    Purpose: Designing a new T2 preparation (T2-Prep) module in order to simultaneously provide robust fat suppression and efficient T2 preparation without requiring an additional fat suppression module for T2-weighted imaging at 3T. Methods: The tip-down RF pulse of an adiabatic T2 preparation (T2-Prep) module was replaced by a custom-designed RF excitation pulse that induces a phase difference between water and fat, resulting in a simultaneous T2 preparation of water signals and the suppression of fat signals at the end of the module (now called a phaser adiabatic T2-Prep). Using numerical simulations, in vitro and in vivo ECG-triggered navigator gated acquisitions of the human heart, the blood, myocardium and fat signal-to-noise ratio and right coronary artery (RCA) vessel sharpness using this approach were compared against previously published conventional adiabatic T2-Prep approaches Results: Numerical simulations predicted an increased fat suppression bandwidth and decreased sensitivity against transmit magnetic field inhomogeneities using the proposed approach, while preserving the water T2 preparation capabilities. This was confirmed by the tissue signals acquired on the phantom and the in vivo MRA, which show similar blood and myocardium SNR and CNR and significantly reduced fat SNR compared to the other methods tested. As a result, the RCA conspicuity was significantly increased and the motion artifacts were visually decreased. Conclusion: A novel fat-suppressing T2-preparation method was developed and implemented that demonstrated robust fat suppression and increased vessel sharpness compared with conventional techniques, while preserving its T2 preparation capabilities.Comment: 23 pages, 5 figures, submitted to Magnetic Resonance in Medicin

    Radical-free hyperpolarized MRI using endogenously-occurring pyruvate analogues and UV-induced nonpersistent radicals

    Full text link
    It was demonstrated that nonpersistent radicals can be generated in frozen solutions of metabolites such as pyruvate by irradiation with ultraviolet (UV) light, enabling radical-free dissolution DNP. Although pyruvate is endogenous, an excess of additional pyruvate may perturb metabolic processes, making it potentially unsuitable as a polarizing agent when studying fatty acids or carbohydrate metabolism. Therefore, the aim of the study was to characterize solutions containing endogenously-occurring alternatives to pyruvate as UV-induced nonpersistent radical precursors for in vivo hyperpolarized MRI. The metabolites alpha-ketovalerate (AKV) and alpha-ketobutyrate (AKB) are analogues of pyruvate and were chosen as potential radical precursors. Sample formulations containing AKV and AKB were studied with UV-visible spectroscopy, irradiated with UV light, and their nonpersistent radical yields were quantified with ESR and compared to pyruvate. The addition of 13C labeled substrates to the sample matrix altered the radical yield of the precursors. Using AKB increased the 13C-labeled glucose liquid state polarization to 16.3 +/- 1.3% compared with 13.3 +/- 1.5% obtained with pyruvate, and 8.9 +/- 2.1% with AKV. For [1-13C]butyric acid, polarization levels of 12.1 +/- 1.1% for AKV and 12.9 +/- 1.7% for AKB were achieved. Hyperpolarized [1-13C]butyrate metabolism in the heart revealed label incorporation into [1-13C]acetylcarnitine, [1-13C]acetoacetate, [1-13C]butyrylcarnitine, [5-13C]glutamate and [5-13C]citrate. This study demonstrates the potential of AKV and AKB as endogenous polarizing agents for in vivo radical-free hyperpolarized MRI. UV-induced, nonpersistent radicals generated in endogenous metabolites enable high polarization without requiring radical filtration, thus simplifying the quality-control tests in clinical applications.Comment: 38 pages, 5 Tables, 8 Figures, Submitted to NMR in Biomedicin

    AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders.

    Get PDF
    AMPA receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits encoded by GRIA1-4 genes. GluA2 has an especially important role because, following post-transcriptional editing at the Q607 site, it renders heteromultimeric AMPARs Ca2+-impermeable, with a linear relationship between current and trans-membrane voltage. Here, we report heterozygous de novo GRIA2 mutations in 28 unrelated patients with intellectual disability (ID) and neurodevelopmental abnormalities including autism spectrum disorder (ASD), Rett syndrome-like features, and seizures or developmental epileptic encephalopathy (DEE). In functional expression studies, mutations lead to a decrease in agonist-evoked current mediated by mutant subunits compared to wild-type channels. When GluA2 subunits are co-expressed with GluA1, most GRIA2 mutations cause a decreased current amplitude and some also affect voltage rectification. Our results show that de-novo variants in GRIA2 can cause neurodevelopmental disorders, complementing evidence that other genetic causes of ID, ASD and DEE also disrupt glutamatergic synaptic transmission

    Fully automated sequential immunofluorescence (seqIF) for hyperplex spatial proteomics

    No full text
    Abstract Tissues are complex environments where different cell types are in constant interaction with each other and with non-cellular components. Preserving the spatial context during proteomics analyses of tissue samples has become an important objective for different applications, one of the most important being the investigation of the tumor microenvironment. Here, we describe a multiplexed protein biomarker detection method on the COMET instrument, coined sequential ImmunoFluorescence (seqIF). The fully automated method uses successive applications of antibody incubation and elution, and in-situ imaging enabled by an integrated microscope and a microfluidic chip that provides optimized optical access to the sample. We show seqIF data on different sample types such as tumor and healthy tissue, including 40-plex on a single tissue section that is obtained in less than 24 h, using off-the-shelf antibodies. We also present extensive characterization of the developed method, including elution efficiency, epitope stability, repeatability and reproducibility, signal uniformity, and dynamic range, in addition to marker and panel optimization strategies. The streamlined workflow using off-the-shelf antibodies, data quality enabling downstream analysis, and ease of reaching hyperplex levels make seqIF suitable for immune-oncology research and other disciplines requiring spatial analysis, paving the way for its adoption in clinical settings

    Unstable TTTTA/TTTCA expansions in MARCH6 are associated with Familial Adult Myoclonic Epilepsy type 3

    Get PDF
    International audienceAbstract Familial Adult Myoclonic Epilepsy (FAME) is a genetically heterogeneous disorder characterized by cortical tremor and seizures. Intronic TTTTA/TTTCA repeat expansions in SAMD12 (FAME1) are the main cause of FAME in Asia. Using genome sequencing and repeat-primed PCR, we identify another site of this repeat expansion, in MARCH6 (FAME3) in four European families. Analysis of single DNA molecules with nanopore sequencing and molecular combing show that expansions range from 3.3 to 14 kb on average. However, we observe considerable variability in expansion length and structure, supporting the existence of multiple expansion configurations in blood cells and fibroblasts of the same individual. Moreover, the largest expansions are associated with micro-rearrangements occurring near the expansion in 20% of cells. This study provides further evidence that FAME is caused by intronic TTTTA/TTTCA expansions in distinct genes and reveals that expansions exhibit an unexpectedly high somatic instability that can ultimately result in genomic rearrangements

    Unstable TTTTA/TTTCA expansions in MARCH6 are associated with Familial Adult Myoclonic Epilepsy type 3

    No full text
    Familial Adult Myoclonic Epilepsy (FAME) is a genetically heterogeneous disorder characterized by cortical tremor and seizures. Intronic TTTTA/TTTCA repeat expansions in SAMD12 (FAME1) are the main cause of FAME in Asia. Using genome sequencing and repeat-primed PCR, we identify another site of this repeat expansion, in MARCH6 (FAME3) in four European families. Analysis of single DNA molecules with nanopore sequencing and molecular combing show that expansions range from 3.3 to 14 kb on average. However, we observe considerable variability in expansion length and structure, supporting the existence of multiple expansion configurations in blood cells and fibroblasts of the same individual. Moreover, the largest expansions are associated with micro-rearrangements occurring near the expansion in 20% of cells. This study provides further evidence that FAME is caused by intronic TTTTA/TTTCA expansions in distinct genes and reveals that expansions exhibit an unexpectedly high somatic instability that can ultimately result in genomic rearrangements

    Unstable TTTTA/TTTCA expansions in MARCH6 are associated with Familial Adult Myoclonic Epilepsy type 3

    Get PDF
    Familial Adult Myoclonic Epilepsy (FAME) is a genetically heterogeneous disorder characterized by cortical tremor and seizures. Intronic TTTTA/TTTCA repeat expansions in SAMD12 (FAME1) are the main cause of FAME in Asia. Using genome sequencing and repeat-primed PCR, we identify another site of this repeat expansion, in MARCH6 (FAME3) in four European families. Analysis of single DNA molecules with nanopore sequencing and molecular combing show that expansions range from 3.3 to 14 kb on average. However, we observe considerable variability in expansion length and structure, supporting the existence of multiple expansion configurations in blood cells and fibroblasts of the same individual. Moreover, the largest expansions are associated with micro-rearrangements occurring near the expansion in 20% of cells. This study provides further evidence that FAME is caused by intronic TTTTA/TTTCA expansions in distinct genes and reveals that expansions exhibit an unexpectedly high somatic instability that can ultimately result in genomic rearrangements

    Abstracts of the 1st International Colloquium in Mine & Society

    No full text
    This book presents the abstracts of the selected contributions to the First International Colloquium on Mines and Society (CIMS) organized by The Higher Institute of Mining and Geology of Boke. The theme of this colloquium was "Mining and Sustainable Development, a major challenge for an Emerging Africa" which aims to bring together teachers, researchers, and Professionals from different backgrounds in order to exchange the results of their research work, share their points of view on the issue of mining and sustainable development. It also aims to define, in a collaborative and inclusive manner, research prospects or future projects between all the actors involved in this field. Colloquium Title: 1st International Colloquium in Mine & SocietyTheme: Mining and Sustainable Development, A Major Challenge for an Emerging AfricaColloquium Date: 20-22 May 2022Colloquium Location: A L’Hôtel Rio Nunez de BokeColloquium Organizer: The Higher Institute of Mining and Geology of Bok
    corecore