slides

A robust broadband fat suppressing phaser T2 preparation module for cardiac magnetic resonance imaging at 3T

Abstract

Purpose: Designing a new T2 preparation (T2-Prep) module in order to simultaneously provide robust fat suppression and efficient T2 preparation without requiring an additional fat suppression module for T2-weighted imaging at 3T. Methods: The tip-down RF pulse of an adiabatic T2 preparation (T2-Prep) module was replaced by a custom-designed RF excitation pulse that induces a phase difference between water and fat, resulting in a simultaneous T2 preparation of water signals and the suppression of fat signals at the end of the module (now called a phaser adiabatic T2-Prep). Using numerical simulations, in vitro and in vivo ECG-triggered navigator gated acquisitions of the human heart, the blood, myocardium and fat signal-to-noise ratio and right coronary artery (RCA) vessel sharpness using this approach were compared against previously published conventional adiabatic T2-Prep approaches Results: Numerical simulations predicted an increased fat suppression bandwidth and decreased sensitivity against transmit magnetic field inhomogeneities using the proposed approach, while preserving the water T2 preparation capabilities. This was confirmed by the tissue signals acquired on the phantom and the in vivo MRA, which show similar blood and myocardium SNR and CNR and significantly reduced fat SNR compared to the other methods tested. As a result, the RCA conspicuity was significantly increased and the motion artifacts were visually decreased. Conclusion: A novel fat-suppressing T2-preparation method was developed and implemented that demonstrated robust fat suppression and increased vessel sharpness compared with conventional techniques, while preserving its T2 preparation capabilities.Comment: 23 pages, 5 figures, submitted to Magnetic Resonance in Medicin

    Similar works