115 research outputs found

    Perceived agency mediates the link between the narcissistic subtypes and self-esteem

    Get PDF
    a b s t r a c t a r t i c l e i n f o Grandiose and vulnerable narcissism share some core features (e.g., entitlement, self-absorption) but differ in other important ways (e.g., self-esteem). To reconcile these differing characteristics, we predicted that differences in perceived agency mediate the association between narcissistic subtypes and differences in selfesteem. One hundred college students completed self-report measures of grandiose narcissism, vulnerable narcissism, explicit global self-esteem, and perceived agency. As predicted, grandiose narcissism was positively associated with agency and self-esteem, whereas vulnerable narcissism was negatively associated with agency and self-esteem. Perceived agency also mediated the associations between each narcissistic subtype and selfesteem. Furthermore, a partial correlation showed that when controlling for agency, the previously null correlation between measures of grandiose and vulnerable narcissism became significantly positive. These findings indicate that agency serves as a primary differentiator between the narcissistic subtypes

    The statistical mechanics of complex signaling networks : nerve growth factor signaling

    Full text link
    It is becoming increasingly appreciated that the signal transduction systems used by eukaryotic cells to achieve a variety of essential responses represent highly complex networks rather than simple linear pathways. While significant effort is being made to experimentally measure the rate constants for individual steps in these signaling networks, many of the parameters required to describe the behavior of these systems remain unknown, or at best, estimates. With these goals and caveats in mind, we use methods of statistical mechanics to extract useful predictions for complex cellular signaling networks. To establish the usefulness of our approach, we have applied our methods towards modeling the nerve growth factor (NGF)-induced differentiation of neuronal cells. Using our approach, we are able to extract predictions that are highly specific and accurate, thereby enabling us to predict the influence of specific signaling modules in determining the integrated cellular response to the two growth factors. We show that extracting biologically relevant predictions from complex signaling models appears to be possible even in the absence of measurements of all the individual rate constants. Our methods also raise some interesting insights into the design and possible evolution of cellular systems, highlighting an inherent property of these systems wherein particular ''soft'' combinations of parameters can be varied over wide ranges without impacting the final output and demonstrating that a few ''stiff'' parameter combinations center around the paramount regulatory steps of the network. We refer to this property -- which is distinct from robustness -- as ''sloppiness.''Comment: 24 pages, 10 EPS figures, 1 GIF (makes 5 multi-panel figs + caption for GIF), IOP style; supp. info/figs. included as brown_supp.pd

    Phenotypic Signatures Arising from Unbalanced Bacterial Growth

    Get PDF
    Fluctuations in the growth rate of a bacterial culture during unbalanced growth are generally considered undesirable in quantitative studies of bacterial physiology. Under well-controlled experimental conditions, however, these fluctuations are not random but instead reflect the interplay between intra-cellular networks underlying bacterial growth and the growth environment. Therefore, these fluctuations could be considered quantitative phenotypes of the bacteria under a specific growth condition. Here, we present a method to identify “phenotypic signatures” by time-frequency analysis of unbalanced growth curves measured with high temporal resolution. The signatures are then applied to differentiate amongst different bacterial strains or the same strain under different growth conditions, and to identify the essential architecture of the gene network underlying the observed growth dynamics. Our method has implications for both basic understanding of bacterial physiology and for the classification of bacterial strains

    A Dual Receptor Crosstalk Model of G-Protein-Coupled Signal Transduction

    Get PDF
    Macrophage cells that are stimulated by two different ligands that bind to G-protein-coupled receptors (GPCRs) usually respond as if the stimulus effects are additive, but for a minority of ligand combinations the response is synergistic. The G-protein-coupled receptor system integrates signaling cues from the environment to actuate cell morphology, gene expression, ion homeostasis, and other physiological states. We analyze the effects of the two signaling molecules complement factors 5a (C5a) and uridine diphosphate (UDP) on the intracellular second messenger calcium to elucidate the principles that govern the processing of multiple signals by GPCRs. We have developed a formal hypothesis, in the form of a kinetic model, for the mechanism of action of this GPCR signal transduction system using data obtained from RAW264.7 macrophage cells. Bayesian statistical methods are employed to represent uncertainty in both data and model parameters and formally tie the model to experimental data. When the model is also used as a tool in the design of experiments, it predicts a synergistic region in the calcium peak height dose response that results when cells are simultaneously stimulated by C5a and UDP. An analysis of the model reveals a potential mechanism for crosstalk between the Gαi-coupled C5a receptor and the Gαq-coupled UDP receptor signaling systems that results in synergistic calcium release

    KBase: The United States Department of Energy Systems Biology Knowledgebase.

    Get PDF

    An Evaluation Schema for the Ethical Use of Autonomous Robotic Systems in Security Applications

    Full text link

    Prediction, control, and learned helplessness.

    No full text
    corecore