54 research outputs found

    Asignaturas de Electrónica en la EPSEM: planificación de la impartición en inglés

    Get PDF
    Al objeto de garantizar la calidad del aprendizaje de la Electrónica en los estudios de Grado impartidos en la EPSEM, es necesario planificar de manera adecuada las asignaturas impartidas en inglés. En este trabajo se muestran los resultados del análisis realizado a los estudiantes que cursarán estas asignaturas, en el que se ponen de manifiesto las dificultades observadas y las expectativas generadas, motivando la elaboración de material de soporte específico.In order to ensure the quality of learning of Electronics for graduate studies offered at the EPSEM, it is needed to plan properly the subjects taught in English. In this paper the results of the students analysis who will attend these courses are shown. These results reveal the difficulties encountered and the expectations generated. This analysis motives the development of specific support material

    Detecting System Errors in Virtual Reality Using EEG Through Error-Related Potentials

    Get PDF
    When persons interact with the environment and experience or wit-ness an error (e.g. an unexpected event), a specific brain pattern,known as error-related potential (ErrP) can be observed in the elec-troencephalographic signals (EEG). Virtual Reality (VR) technologyenables users to interact with computer-generated simulated envi-ronments and to provide multi-modal sensory feedback. Using VRsystems can, however, be error-prone. In this paper, we investigatethe presence of ErrPs when Virtual Reality users face 3 types ofvisualization errors: (Te) tracking errors when manipulating virtualobjects, (Fe) feedback errors, and (Be) background anomalies. Weconducted an experiment in which 15 participants were exposed tothe 3 types of errors while performing a center-out pick and placetask in virtual reality. The results showed that tracking errors gener-ate error-related potentials, the other types of errors did not generatesuch discernible patterns. In addition, we show that it is possible todetect the ErrPs generated by tracking losses in single trial, with anaccuracy of 85%. This constitutes a first step towards the automaticdetection of error-related potentials in VR applications, paving theway to the design of adaptive and self-corrective VR/AR applicationsby exploiting information directly from the user’s brain

    Integrative Transkingdom Analysis of the Gut Microbiome in Antibiotic Perturbation and Critical Illness

    Get PDF
    cited By 2Bacterial microbiota play a critical role in mediating local and systemic immunity, and shifts in these microbial communities have been linked to impaired outcomes in critical illness. Emerging data indicate that other intestinal organisms, including bacteriophages, viruses of eukaryotes, fungi, and protozoa, are closely interlinked with the bacterial microbiota and their host, yet their collective role during antibiotic perturbation and critical illness remains to be elucidated. We employed multi-omics factor analysis (MOFA) to systematically integrate the bacterial (16S rRNA), fungal (intergenic transcribed spacer 1 rRNA), and viral (virus discovery next generation sequencing) components of the intestinal microbiota of 33 critically ill patients with and without sepsis and 13 healthy volunteers. In addition, we quantified the absolute abundances of bacteria and fungi using 16S and 18S rRNA PCRs and characterized the short-chain fatty acids (SCFAs) butyrate, acetate, and propionate using nuclear magnetic resonance spectroscopy. We observe that a loss of the anaerobic intestinal environment is directly correlated with an overgrowth of aerobic pathobionts and their corresponding bacteriophages as well as an absolute enrichment of opportunistic yeasts capable of causing invasive disease. We also observed a strong depletion of SCFAs in both disease states, which was associated with an increased absolute abundance of fungi with respect to bacteria. Therefore, these findings illustrate the complexity of transkingdom changes following disruption of the intestinal bacterial microbiome. IMPORTANCE While numerous studies have characterized antibiotic-induced disruptions of the bacterial microbiome, few studies describe how these disruptions impact the composition of other kingdoms such as viruses, fungi, and protozoa. To address this knowledge gap, we employed MOFA to systematically integrate viral, fungal, and bacterial sequence data from critically ill patients (with and without sepsis) and healthy volunteers, both prior to and following exposure to broad-spectrum antibiotics. In doing so, we show that modulation of the bacterial component of the microbiome has implications extending beyond this kingdom alone, enabling the overgrowth of potentially invasive fungi and viruses. While numerous preclinical studies have described similar findings in vitro, we confirm these observations in humans using an integrative analytic approach. These findings underscore the potential value of multi-omics data integration tools in interrogating how different components of the microbiota contribute to disease states. In addition, our findings suggest that there is value in further studying potential adjunctive therapies using anaerobic bacteria or SCFAs to reduce fungal expansion after antibiotic exposure, which could ultimately lead to improved outcomes in the intensive care unit (ICU).Peer reviewe

    Interaction for Immersive Analytics

    Get PDF
    International audienceIn this chapter, we briefly review the development of natural user interfaces and discuss their role in providing human-computer interaction that is immersive in various ways. Then we examine some opportunities for how these technologies might be used to better support data analysis tasks. Specifically, we review and suggest some interaction design guidelines for immersive analytics. We also review some hardware setups for data visualization that are already archetypal. Finally, we look at some emerging system designs that suggest future directions

    Novice Shooters With Lower Pre-shooting Alpha Power Have Better Performance During Competition in a Virtual Reality Scenario

    Get PDF
    Competition changes the environment for athletes. The difficulty of training for such stressful events can lead to the well-known effect of “choking” under pressure, which prevents athletes from performing at their best level. To study the effect of competition on the human brain, we recorded pilot electroencephalography (EEG) data while novice shooters were immersed in a realistic virtual environment representing a shooting range. We found a differential between-subject effect of competition on mu (8–12 Hz) oscillatory activity during aiming; compared to training, the more the subject was able to desynchronize his mu rhythm during competition, the better was his shooting performance. Because this differential effect could not be explained by differences in simple measures of the kinematics and muscular activity, nor by the effect of competition or shooting performance per se, we interpret our results as evidence that mu desynchronization has a positive effect on performance during competition

    Optimal control of a water distribution network in a supervisory control system

    No full text
    This paper deals with the use of optimal control techniques in water distribution networks. An optimal control tool, developed in the context of a European research project is described and the application to the city of Sintra (Portugal) is presented.This work was supported by the project 'Knowledge capture of advanced supervision of water distribution networks' (S-00523). This work has been partly funded by the Commission of the European Communities (ESPRIT-IV No. 22186) and by the Research Committee of the Generalitat de Catalunya (group SAC, ref. 1997AGR00098). The authors are members of CERCA (Association for the Study and Research in Automatic control) and of LEA-SICA (Associated European Laboratory on Intelligent Systems and Advanced Control).Peer Reviewe

    Design and evaluation of Binaural auditory rendering for CAVEs

    No full text

    Uncovering EEG Correlates of Covert Attention in Soccer Goalkeepers: Towards Innovative Sport Training Procedures

    Get PDF
    International audienceAdvances in sports sciences and neurosciences offer new opportunities to design efficient and motivating sport training tools. For instance, using NeuroFeedback (NF), athletes can learn to self-regulate specific brain rhythms and consequently improve their performances. Here, we focused on soccer goalkeepers’ Covert Visual Spatial Attention (CVSA) abilities, which are essential for these athletes to reach high performances. We looked for Electroencephalography (EEG) markers of CVSA usable for virtual reality-based NF training procedures, i.e., markers that comply with the following criteria: (1) specific to CVSA, (2) detectable in real-time and (3) related to goalkeepers’ performance/expertise. Our results revealed that the best-known EEG marker of CVSA—increased α-power ipsilateral to the attended hemi-field— was not usable since it did not comply with criteria 2 and 3. Nonetheless, we highlighted a significant positive correlation between athletes’ improvement in CVSA abilities and the increase of their α-power at rest. While the specificity of this marker remains to be demonstrated, it complied with both criteria 2 and 3. This result suggests that it may be possible to design innovative ecological training procedures for goalkeepers, for instance using a combination of NF and cognitive tasks performed in virtual reality
    • …
    corecore