
Detecting System Errors in Virtual Reality Using EEG Through
Error-Related Potentials

Hakim Si-Mohammed*†

Inria, Univ. Rennes, CNRS, IRISA
Rennes, France

Catarina Lopes-Dias*
Institute of Neural Engineering
Graz University of Technology

Graz, Austria

Maria Duarte
Faculty of Science

University of Lisbon
Lisbon, Portugal

Ferran Argelaguet
Inria, Univ. Rennes, CNRS, IRISA

Rennes, France

Camille Jeunet
CNRS, CLLE Lab, Univ. Toulouse

Toulouse, France
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ABSTRACT

When persons interact with the environment and experience or wit-
ness an error (e.g. an unexpected event), a specific brain pattern,
known as error-related potential (ErrP) can be observed in the elec-
troencephalographic signals (EEG). Virtual Reality (VR) technology
enables users to interact with computer-generated simulated envi-
ronments and to provide multi-modal sensory feedback. Using VR
systems can, however, be error-prone. In this paper, we investigate
the presence of ErrPs when Virtual Reality users face 3 types of
visualization errors: (Te) tracking errors when manipulating virtual
objects, (Fe) feedback errors, and (Be) background anomalies. We
conducted an experiment in which 15 participants were exposed to
the 3 types of errors while performing a center-out pick and place
task in virtual reality. The results showed that tracking errors gener-
ate error-related potentials, the other types of errors did not generate
such discernible patterns. In addition, we show that it is possible to
detect the ErrPs generated by tracking losses in single trial, with an
accuracy of 85%. This constitutes a first step towards the automatic
detection of error-related potentials in VR applications, paving the
way to the design of adaptive and self-corrective VR/AR applications
by exploiting information directly from the user’s brain.

Index Terms: Human-centered computing—Visualization—Visu-
alization techniques—Treemaps; Human-centered computing—
Visualization—Visualization design and evaluation methods

1 INTRODUCTION

Virtual Reality enables to design computer generated environments
inside of which, users can be immersed and interact using new
types of input devices [17]. One key aspect of Virtual Reality is
the sense of presence [33] i.e the sense of ”being there” in the
virtual environment, which can be lessened by different sorts of
errors amongst which, tracking and rendering errors. These errors
can sometimes be difficult to automatically detect. In this paper,
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we propose to take a first step towards the use of Brain-Computer
Interfaces (BCIs) in order to detect the occurrence of these errors
from users’ brains.

BCIs convert users’ cognitive states into information. Various
studies [1, 3, 29,30] have revealed the possibility to estimate one’s
mental activity (e.g., movement imagination, mental 3D rotations)
or the mental state (e.g., mental workload, engagement) from the
measurement of their brain activity. One of the most popular imaging
techniques is the electroencephalography (EEG), which measures
the electrical activity of the brain from the scalp. The possibility to
access this information provides new opportunities for improving
Virtual Reality interaction by pro-actively adapting to the users
depending on their mental state [22].

In particular, one neurophysiological signature, the error-related
potential (ErrP) [4], holds great promise for improving interactive
systems, as it appears shortly after an erroneous event onset. The
generation of an ErrP happens when the user commits or witnesses
an error and can be observed in the user’s EEG signals as a specific
EEG pattern. Yet, the concept of erroneous event is relative to the
user’s perspective, and the amplitude of the pattern has been shown
to be correlated with the gravity or impact of the error as well as with
the engagement of the user in the task [8]. Nevertheless, studies [9]
have shown that it was stable across time for each subject, and that
it was possible to detect ErrP in single trials.

Error-related potentials can be particularly interesting in human-
computer interaction (HCI) contexts [4]. Being able to detect when a
user perceives an error without requiring an explicit communication
can be useful in many scenarios [38]. For example, it could be
used to automatically assess the robustness of a system (e.g. link-
ing the state of the system with erroneous events) or it could be
used directly in the interaction process (e.g. automatically correct
application or user errors). However, most of the existing works
involve simple, unrealistic scenarios and do not study ErrPs in an
ecological environment (realistic environment, involving commonly
found tasks) [4, 9, 20, 25, 34]. Very few papers have investigated the
presence of and the possibility to detect ErrPs in Virtual or Aug-
mented Reality. Besides, to the best of the authors’ knowledge, none
have reported single trial classification of ErrPs in a VR scenario,
meaning the automatic detection of ErrPs on single epochs rather
than grand average analysis, nor have performed a systematic study
on the different types of errors originating from the system.

Therefore, in this paper, we study the presence and the detection
of ErrPs originating from Virtual Reality systems. In particular:
what happens (1) when the tracking of an object being manipulated
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by the user is lost; (2) when the system’s response does not match
the user’s expectations; and (3) when an unrealistic event happens
in the background. The possibility to detect the occurrence of these
events from the users’ brain activity paves the way to new means of
improving interaction in Virtual/Augmented Reality. For the users,
it could allow the design of mechanisms to automatically correct the
system’s behavior when they perceive an error, and consequently
increase the systems’ robustness. It could also help the systems’
designers by providing them with a tool to better diagnose and re-
view the interaction scenarios. One could think about automatically
flagging the moments when users perceive errors, and marking them
as points of interests.

In order to answer the questions mentioned herein-above, we
designed a user study the aim of which was to highlight the neuro-
physiological pattern arising from situations representing 3 types
of errors in VR/AR: (1) Tracking errors, which prevent the user
from accomplishing a task –they were represented by a loss of track-
ing; (2) Feedback errors, corresponding to the situation where the
obtained feedback is erroneous; and (3) Background anomalies, cor-
responding to the situation where an unrealistic event, unrelated to
the task, happens in the background of the VR scene.

The remainder of the paper is structured as follows: Section 2
provides an overview of previous work on error-related potentials,
and their use for improving Human-Computer Interaction, with a
particular focus on Virtual Reality applications. Section 3 describes
the user study that was conducted to investigate the presence of
error-related potentials under three conditions of system errors in
VR. Section 3 presents the materials and methods. The results are
presented and summarized in Section 4 and discussed in Section 5.

2 RELATED WORK

The first studies reporting a neurophysiological response to errors,
were conducted in the early 90’s [7, 12]. They demonstrated that
shortly after subjects committed errors in a speed response choice
task, a characteristic EEG event-related potential (ERP) was elicited.
This ERP was designated as error-related negativity (ERN). This
ERN mainly consisted in a negative potential deflection over the
fronto-central scalp areas appearing 50 to 100ms after a subject’s
erroneous response, and was followed by a centro-parietal positive
deflection [8].

Later studies further showed that the amplitude of the ERN was
modulated by the importance of the error with regards to the given
task [11], as well as with the subjective awareness of the error [8,
24, 35]. In addition to the ERN, a similar EEG pattern was shown
to appear after an erroneous feedback. Called the feedback-related
negativity (FRN) this potential appears between 200 and 300 ms
after the feedback onset [14]. Today, these patterns are grouped
under the term error-related potential (ErrP) which has become
widespread in the HCI community [4].

In the literature, at least 4 different types of ErrPs have been
introduced, depending on the circumstances in which they occur.
namely: (1) Execution errors, which correspond to errors made
by the user during the execution of a task ; (2) Outcome error,
which corresponds to the situation where the outcome of an action
differs from what was expected ; (3) Observation errors, which
correspond to the observation of another person or agent committing
an error. (4) Interaction errors, which correspond to the execution of
an unintended action by a HCI. Here, we study the errors originating
from the interactive system, which fall in the ”interaction errors”
category.

2.1 Error-Related Potentials for Human-Computer Inter-
action

Originally, error-related potentials have been described in the context
of BCIs by Schalk and colleagues [32]. Error-related potentials can
be used as a corrective signal, to correct a BCI’s output when this

does not provide the intended command [10, 31] or in an adaptive
manner, reducing the possibility of future errors [18, 19].

Additionally, the existence and decoding of ErrPs in asynchronous
scenarios has been established [16, 20, 21, 25, 34]. Interested readers
may refer to [4] for a more comprehensive review on error-related
potentials.

These studies, suggest the possibility to detect and exploit ErrPs
in interaction scenarios. However, most of them were conducted
in non-ecological scenarios conditions. Recently, ErrPs have been
studied in real-world situations, like driving a car [39], indicating
the feasibility of decoding ErrPs in ecological scenarios.

2.2 Error-Related Potentials in Virtual Reality

A very limited number of papers addressed the presence and the
detection of error-related potentials in realistic Virtual Reality envi-
ronments.

Padrao et al. [27] were among the first to investigate the presence
of error-related potentials in VR. Their objective was to study the
neurophysiological correlates of violating agency, and the differ-
ences between self-generated and external errors. Their experiment
consisted in a fast selection task, involving arm movement towards
the left or the right. The self-generated errors corresponded to er-
rors made by the subjects by choosing the wrong direction, while
the externally generated errors corresponded to a wrong feedback
from the avatar, with the virtual arm going to a different direction
from the subject’s arm. Their results on 24 subjects show a clear
difference between the neurophysiological responses corresponding
to the 2 conditions. While the self-generated errors displayed a
fronto-central negativity around 100 ms after the error onset, the
errors generated by the avatar elicited a parietal negativity around
400 ms after the error onset.

Yazmir et al. [37] investigated the presence of error-related po-
tentials in the brain activity of subjects submitted to errors in a
hapto-visual task. The participants were asked to move a virtual
object horizontally from an origin to a destination using a Phantom
haptic arm. The path was obstructed by a large cylinder so that the
participants would lose sight of the target behind the cylinder. The
errors were generated by tweaking the vertical position of the target
when reappearing from behind the cylinder. In the correct trials, the
object would reappear at the same vertical level, while it would be
randomly translated vertically in the error trials. Their results on
5 subjects suggests the presence of an ERN shortly after the error
onset.

Later, in [36] Yazmir et al. studied and compared the EEG corre-
lates for success and failure in a ”tennis-like” throwing game. The
participants had to play the game against the computer. They con-
sidered 2 types of events: (1) Success or ”hit”, corresponding to
the situation where the players scored a goal, meaning that they
hit the ball and that the computer missed it. (2) Failure or ”miss”,
corresponding to the situation where the players did not score, i.e.
the computer repelled the ball. Their results show that negative
peaks appeared in both of the events with different amplitudes and
latencies.

In 2018, Pezzetta et al. [28] investigated the presence of error-
related potentials in a situation where the errors were more frequent
than correct trials. Their goal was to disentangle and assess that
ERN were indeed associated with a perceived error rather than with
the rarity of the errors. They combined EEG measurement with a
CAVE (Cave Virtual Environment) in an observation task, where
participants had to watch a 1-st person perspective avatar realizing a
grasping task. In the correct trials, the virtual arm would succeed
in grasping a virtual glass, whereas in the erroneous trials it would
miss the glass. The originality of this work, lies in the fact that the
proportion of errors was higher than the correct trials (70% and 30%
respectively). Nevertheless, their results on 25 subjects show the
eliciting of a fronto-central negativity around 300 ms after the error



Figure 1: Experimental setup used in our study. Left : participant wearing both an EEG cap (ANTNeuro EEGO sports) and an HTC Vive VR
headset. Right : virtual environment. Participants were seated in front of a virtual table on which three targets were displayed. The virtual object
(brown) was placed in the middle of the three targets and had to be picked up and placed on one target.

onset, demonstrating the presence of observation errors in VR as
well as the fact that despite their higher probability, erroneous events
still elicited error-related potentials. More recently, [13] explored the
use of ErrPs in order to detect conflicts in visuo-haptic integration.
Their results suggest a more pronounced early negativity during the
trials where the visual and haptic feedback did not match.

The previous work clearly suggests the presence of error-related
potentials in the brain activity of subjects facing errors in VR. How-
ever, none of them systematically studied the different kinds of errors
that can emerge from a VR system.

3 MATERIALS AND METHODS

Our goal is to investigate the presence of error-related potentials in
different erroneous situations happening in VR. In particular, we
identified 3 types of situations that potentially elicit error-related
potentials: (Te) The loss of tracking of a manipulated object ; (Fe) An
unexpected or erroneous feedback ; (Be) An unrealistic background
anomaly. To assess whether or not these conditions elicit error-
related potentials, we conducted a user study to record EEG activity
under each one of them. From the literature and previous work,
our hypotheses were that (Te) would elicit Event-Related Negativity
(ERN) associated with execution errors, that (Fe) would trigger a
Feedback Related Negativity whereas (Be) would trigger an ERN for
the users who notice the anomaly and that it is possible to classify
and detect the elicited ErrPs in single trial.

3.1 Apparatus and participants
Fifteen healthy and not color-blind participants (7 women, 8 men)
took part in the experiment (aged mean= 24.8 years, std=2.9). This
study was designed in accordance to the declaration of Helsinki, data
was anonymized and all subjects provided prior written informed
consent. They were also informed of the informed that they could
stop the experiment at any moment if they wished, with no conse-
quences. The VR environment was displayed using used a HTC Vive
device, which is a commercially available virtual reality device and
can be bought and used by general population with no instruction or
supervision.

EEG measurements were performed with an ANT Neuro equip-
ment which has a CE certificate as a medical equipment. The
equipment consists of a cap with electrodes, which is put over the
participant’s head. The electrodes on the cap were filled with a
non-abrasive gel.

Sixty-four (64) EEG channels were recorded, grounded to the
forehead, and referenced to CPz. The signal was amplified using an
ANTNeuro Amplifier and recorded at 512 Hz.

The virtual scene and the experiment protocol were designed
using the Unity software and C# scripting. The virtual scene was
displayed using an HTC Vive Head-Mounted Display (HMD). The
mounting of the HMD on top of the EEG cap was made in a way to
avoid pressure on the fronto-central electrodes, by only fixating the
HMD using the lateral elastic bands and leaving the upper elastic
band looser.

The EEG data and experiment events were recorded using the
Lab Recorder, which stores data sent using the Lab Streaming Layer
(LSL) protocol [15].

3.2 Experimental protocol
After the participants signed the consent form, they were equipped
with the EEG cap and the VR headset. The virtual environment con-
sisted of an office with a table placed in the middle, associated with
a real table to provide participants with a passive haptic feedback
(see Figure 1). Participants sat at the table, and had to perform a
center-out pick and place task, using a Vive controller for grabbing,
moving and dropping the objects using the controller trigger.

The experiment consisted in 4 conditions corresponding to the
types of trials:

• Correct: These trials correspond to the normal realization of
the task. In these trials, the participant grabbed the object and
dropped it in the correct shape. They were provided with the
correct feedback (Fc) (Figure 2: Top left).

• Tracking error (Te): These trials correspond to the situation
in which the system lost tracking of the object before the
participant placed it into the target shape. At a random point
within 25% and 75% of the distance between the initial position
and the destination shape, the object froze and was detached
from the participant’s hand. In this event, the participant was
asked not to go back to the object and just wait for the next
trial (Figure 2: Top right).

• Feedback error (Fe): These trials correspond to the partic-
ipant getting an unexpected, erroneous feedback after com-
pleting the task. Even if the object was placed in the correct
shape, the shape would turn red, which corresponds to a wrong
feedback (Figure 2: Bottom left). No further intructions were
given to the participant.

• Background anomaly (Be): These trials correspond to the
situation where an unrealistic anomaly, not related to the task,
appears in the background. Randomly, when the object was



Figure 2: Illustration of 4 experimental conditions. Top left: Correct Feedback (Fc) condition. The participant receives a correct feedback after the
completion of the task. Bottom left: Feedback error (Fe) condition. The participant receives a wrong feedback after the completion of the task. Top
right: Tracking error (Te) condition. The object freezes and is detached from the participant’s hand. Bottom right: Background anomaly (Be). The
picture frame in front of the participant flips and gets into an unrealistic position, penetrating the table.

within 25% and 75% of the total distance between the origin
and the target shape, a frame placed in front of the participant
on the table would flip and stay in an unrealistic position
(crossing the table) until the end of the trial (see Figure 2:
Bottom right).

Each trial started with the appearance of one of the three objects
(a parallelepiped, a cylinder or a tetrahedron) placed at the center
of the table. The participant’s task was to grab the object and place
it on the corresponding object’s base shape (a square, a circle or a
triangle respectively). After the participant placed the object on the
corresponding shape, they were provided with a colored feedback
for 2 s. The selected shape turned green if it was correctly associated
with the object, and turned red otherwise. The timeline of the task is
summarized in Figure 3.

The initial position of the object was equidistant to the 3 destina-
tion shapes (approx 25cm from the central position), and the whole
setup could fit the user’s field of view, so that the participant did not
have to move the head to perform the task and thus to reduce muscle
artifacts, which degrade EEG signals.

The experiment consisted of 10 runs of 39 trials (390 trials in
total). In total there were approximately 69% of correct trials and
31% of erroneous trials. Each run consisted of 27 correct trials
and 12 erroneous trials: 5 trials of condition Te (13%), 5 trials of
condition Fe (13%) and 2 trials of condition Be (5%). For each run,
the sequence of correct and error trials as well as the object in each
trial were pseudo-randomly distributed, i.e., a random sequence
was generated once and the same sequence was applied for all
participants. The total duration of the experiment was around 1h30,
including the time to set up the EEG cap, and, between runs, the
participants could take breaks for as long as they wanted.

3.3 Electrophysiological analysis
Before being preprocessed, the signal was resampled to 256 Hz and
re-referenced to the average of left and right mastoids (using elec-
trodes P7 and P8). In order to perform artifact rejection, the signal
was filtered between 1 and 30 Hz and only the channels F3, F1, Fz,

F2, F4, FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4, CP3, CP1,
CP2 and CP4 were considered. Epochs were rejected by threshold
(± 125 microvolts), probability and kurtosis. Regarding the meth-
ods based on probability and kurtosis, a threshold of 5 standard
deviations was used as excluding criteria [6]. For 14 participants
(all except participant 10), up to 12.5% of trials per condition were
removed. For participant 10, up to 25% of trials per condition were
removed.

For the electrophysiological analysis, the data was band-pass
filtered between 1 and 10 Hz with a zero-phase Butterworth filter of
order 4.

In order to compare erroneous and correct responses, we defined
three types of onset events in correct trials (Tc, Fc and Bc) occurring
at comparable time-points to the error onsets in error trials (Te, Fe
and Be, respectively).

For trials of type Fc, we considered as onset the moment in which
the target shape turned green (correct feedback). Trials of type Tc
and Bc had no intrinsic onset, so we considered virtual onsets corre-
sponding to each participant’s average delay of the corresponding
error onsets (Te and Be, respectively), in relation to the moment in
which the object was grabbed.

To display the electrophysiological analysis of all conditions, we
considered a 1 s window of starting -0.2 s before the corresponding
onset and ending 0.8 s after it. The results are displayed as topoplots,
calculated using all channels, and as EEG traces at channel FCz due
to it being a representative channel.

3.4 Single Trial Classification
For the classification of the tracking condition (Te vs Tc), we consid-
ered 250 ms epochs starting 0.150 ms after either the error onset (Te)
in the error trials or the virtual onset (Tc) in correct trials. For the
classification of the feedback condition (Fe vs Fc), we considered
250 ms epochs starting 0.100 ms after either the error onset (Fe)
in the error trials or the virtual onset (Fc) in correct trials. In both
situations, the amplitudes of the channels FCz and Cz within these
windows were used as features to train a shrinkage-linear discrim-
inant analysis (LDA) classifier [2]. To evaluate the classification



Object Appears Object Grabbed Error Onset (Te, Be) Feedback Onset (Fc, Fe)

Figure 3: Timeline of a trial with the different possible events. At the beginning of the trial, the object appears at the center of the table and the
participant had to grab the object. During the tracking error (Te) trials, the object freezes (top). During background anomaly (Be) trials, the frame
on the tables flips (bottom). When the participant achieves the task, a correct feedback (top) is given in the correct trials, and an error feedback
(bottom) is given on Feedback error (Fe) trials.

results we performed 10 times a 5-fold cross-validation. To address
the imbalance between the classes, we considered, in each fold of the
cross-validation, only a randomly selected subset of the correct trials,
matching the number of error trials. This way, the classification was
performed using a balanced data set.

For the classification of the tracking condition (Te vs Tc), Te
was considered as the positive class and Tc as the negative class.
Similarly, for the classification of the feedback condition (Fe vs Fc),
Fe was defined as the positive class and Fc as the negative class.
The classification results are reported in terms of accuracy, true
positive rate (TPR) and true negative rate (TNR). The theoretical
chance-level for all measures is 50%. The significance level (SL) was
individually calculated for every participant, as the upper-limit of the
95% confidence interval of the theoretical chance-level, calculated
based on the binomial cumulative distribution [5, 23].

4 RESULTS

Here we present the results regarding the electrophysiological analy-
sis and the single-trial classification.

4.1 Electrophysiological Analysis
Tracking Error vs Correct Tracking Analysis (Te and Tc)
The results of the electrophysiological analysis of the tracking con-
ditions (Te and Tc) are summarized in Figure 4. Figure 4 (Left)
depicts the topoplots of the grand average correct (Tc) and error
(Te) signals from t = 0 s to t = 0.55 s in intervals of 50 ms (top and
bottom rows, respectively).

Figure 4 (Right), the green line represents the grand average
signal corresponding to correct trials (Tc) at channel FCz. The red
line represents the grand average signal corresponding to error trials
(Te) at channel FCz. The correct epochs are not aligned to a real
event but rather to a virtual onset, and therefore no event-related
potential is expected. The grand average correct signal obtained
is characterized by a relatively flat curve. The grand average error
signal obtained is characterized by a positive peak at time t = 0.206 s
with amplitude 0.4 μV, followed by a negative peak at time t =
0.257 s with amplitude −4.0 μV. This is followed by a positive peak
at time t = 0.335 s with amplitude 8.6 μV, by a negative peak at
t = 0.421 s with amplitude 0.4 μV and, finally, by a positive peak at
time t = 0.491 s with an amplitude of 2.5 μV.

Feedback Error vs Correct Feedback Analysis (Fe and Fc)
The results of the electrophysiological analysis of the feedback
conditions (Fe and Fc) are shown in Figure 5. Figure 5 (Left) depicts

the topoplots of the grand average correct (Fc) and error (Fe) signals
from t = 0 s to t = 0.55 s in intervals of 50 ms (top and bottom rows,
respectively).

Figure 5 (Right), the green line represents the grand average
signal corresponding to correct trials (Fc) at channel FCz. The red
line represents the grand average signal corresponding to error trials
(Fe) at channel FCz.

Both correct and erroneous feedback trials are time-locked to an
event (start of feedback) and were expected to elicit an event-related
potential.

The grand average correct signal obtained is characterized by a
positive peak at time t = 0.257 s with amplitude 3.05 μV. The grand
average error signal obtained is characterized by a negative peak at
time t = 0.148 s with amplitude −2.52 μV, followed by a positive
peak at time t = 0.253 s with amplitude 5.22 μV.

Background Anomaly Trials Analysis (Be and Bc)
Figure 6 displays results of the electrophysiological analysis of the
background anomaly conditions (Be and Bc). Figure 6 (Left) depicts
the topoplots of the grand average correct (Fc) and error (Fe) signals
from t = 0 s to t = 0.55 s in intervals of 50 ms (top and bottom rows,
respectively).

Figure 6 (Right), the green line represents the grand average
signal corresponding to correct trials (Bc) at channel FCz. The
red line represents the grand average signal corresponding to error
trials (Be) at channel FCz. Correct epochs are not aligned to a real
event but rather to a virtual onset and therefore were not expected
to be associated with an event-related potential. Error trials were
time-locked to the moment in which the frame flipped and were
expected to cause an event-related potential, in case participants
noticed the occurrence. The grand average correct signal obtained
is characterized by a relatively flat curve. The grand average error
signal obtained is also characterized by by a relatively flat curve,
although a small positive peak at time t = 0.292 s with amplitude
1.43 μV is visible.

4.2 Single Trial Classification
In order to illustrate the feasibility of detecting error-related po-
tentials in single trial in a VR experiment, we decided to test the
single trial classification on the tracking condition (Te vs Tc) and on
the feedback condition (Fe vs Fc). The EEG signals regarding the
tracking condition were very distinct and Te condition presented a
clear ErrP pattern. These were good indicators that these could lead
to a good classification performance. The signals in the feedback
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Figure 4: (Left) Topoplots of the grand average error (Te) and correct (Tc) conditions (top and bottom rows respectively), displayed from t = 0 s to
t = 0.55 s in intervals of 50 ms. (Right) Grand average correct (Tc) and error (Te) signals at channel FCz (green and red lines, respectively). The
shaded areas represent the 95% confidence interval for the average curves. The black vertical line represents the onset events.
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Figure 5: (Left) Topoplots of the grand average error (Fe) and correct (Fc) conditions (top and bottom rows, respectively), displayed from t = 0 s to
t = 0.55 s in intervals of 50 ms. (Right) Grand average correct (Fc) and error (Fe) signals at channel FCz (green and red lines, respectively). The
shaded areas represent the 95% confidence interval for the average curves. The black vertical line represents the onset events.
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Figure 6: (Left) Topoplots of the grand average error (Be) and correct (Bc) conditions (top and bottom rows, respectively), displayed from t = 0 s to
t = 0.55 s in intervals of 50 ms. (Right) Grand average correct (Bc) and error (Be) signals at channel FCz (green and red lines, respectively). The
shaded areas represent the 95% confidence interval for the average curves. The black vertical line represents the onset events.



Participants Accuracy (%) TNR (%) TPR (%) SL (%)

P1* 87.1 ± 7.5 90.0 ± 10.0 84.3 ± 10.4 60.2

P2* 91.8 ± 6.5 95.7 ± 6.2 88.0 ± 11.8 60.0

P3* 89.0 ± 6.3 88.9 ± 8.7 89.1 ± 10.2 60.3

P4* 91.7 ± 6.0 95.1 ± 6.8 88.2 ± 10.9 60.3

P5* 80.3 ± 9.6 81.3 ± 13.2 79.3 ± 12.9 60.3

P6* 81.6 ± 8.2 86.0 ± 13.2 77.3 ± 13.3 60.3

P7* 91.2 ± 6.0 94.6 ± 7.0 87.7 ± 11.8 60.1

P8* 73.8 ± 9.1 80.2 ± 11.5 67.3 ± 17.4 60.3

P9* 76.9 ± 11.5 80.2 ± 13.8 73.4 ± 15.7 60.2

P10* 81.9 ± 8.8 84.5 ± 11.5 79.3 ± 15.3 61.0

P11* 77.8 ± 9.7 79.6 ± 12.8 76.0 ± 14.8 60.3

P12* 79.9 ± 9.9 81.6 ± 13.0 78.4 ± 15.3 60.2

P13* 95.4 ± 4.4 98.7 ± 3.6 92.2 ± 7.5 60.1

P14* 85.1 ± 6.3 95.1 ± 6.9 75.2 ± 12.0 60.0

P15* 90.2 ± 5.6 94.4 ± 6.3 86.1 ± 9.8 60.1

Average 84.9 ± 6.5 88.4 ± 6.8 81.5± 7.1

Table 1: Single-trial classification results of the tracking condition (Tc
vs Te) in terms of accuracy, true negative rate (TNR) and true positive
rate (TPR) for every participant (mean ± std) and their average. The
Tc class was defined as the negative class and the Te class was
defined as the positive class. The significance-level (SL) indicates
the the upper-limit of the 95% confidence interval of the theoretical
chance-level. Participants whose average measures were above
significance level were marked with ’*’.

condition were very similar to each other, posing challenges to a
reliable classification.

4.2.1 Tracking condition
Table 1 displays the single trial classification results of Tc vs Te trials
in terms of accuracy, TNR and TPR. The average accuracy obtained
was 84.9%. The average TNR obtained was 88.4%. The average
TPR obtained was 81.5%. The obtained results are significantly
above chance-level (α = 0.05).

4.2.2 Feedback condition
Table 2 displays the single trial classification results of Fc vs Fe trials
in terms of accuracy, TNR and TPR. The average accuracy obtained
was 59.3%. The average TNR obtained was 59.0%. The average
TPR obtained was 59.6%. The average results are not significantly
above chance-level (α = 0.05).

5 DISCUSSION

In this experiment we analyzed the electrophysiological signature
during three possible system errors (tracking loss, feedback error
and background anomaly) in a virtual reality task, and in particular
the appearance of error-related potentials on the EEG data. Taken
together, the results presented above suggest that it is possible to
accurately classify ”tracking error” vs ”correct” conditions in single
trial, and that it seems more difficult to detect ”feedback error” and
”background anomaly” conditions.

The first observation that it was possible to make regarding the
”tracking error” errors is that participants could easily notice them.
As when they happened, participants were no longer able to achieve
the pick-and-place task. Thus, this kind of error jeopardized the task
and generated ErrPs. Besides, the pattern of the ErrP obtained in
our study is very similar and well consistent with state-of-the-art
literature regarding error signals in 2D paradigms [25, 26, 34].

The results of the analysis of the ”feedback error” condition
does not seem to show a clear ErrP pattern. Both correct and error
trials were associated with an evoked potential. The erroneous
condition displayed a small negative peak, that was not present in the
correct condition, and displayed a positive peak with slightly higher

Participants Accuracy (%) TNR (%) TPR (%) SL (%)

P1 56.7 ± 12.2 54.0 ± 16.3 59.3 ± 19.0 60.3

P2* 66.1 ± 9.3 65.2 ± 16.0 67.2 ± 12.6 60.2

P3* 68.1 ± 9.3 68.0 ± 14.1 68.2 ± 13.7 60.3

P4 54.4 ± 8.3 57.2 ± 16.3 51.7 ± 15.7 60.2

P5 60.5 ± 10.0 60.1 ± 16.0 61.2 ± 16.0 60.2

P6 62.8 ± 9.7 59.6 ± 17.4 66.2 ± 17.4 60.3

P7 54.5 ± 10.6 58.0 ± 13.2 51.0 ± 16.2 60.4

P8* 62.7 ± 9.9 63.1 ± 15.1 62.2 ± 17.1 60.3

P9 58.3 ± 10.6 58.3 ± 15.4 58.4 ± 18.7 60.6

P10* 64.2 ± 10.6 63.8 ± 15.6 64.8 ± 16.1 61.0

P11 48.1 ± 11.2 47.5 ± 17.8 48.8 ± 14.7 60.2

P12* 66.4 ± 9.5 60.3 ± 14.7 72.5 ± 15.5 60.2

P13 57.2 ± 10.5 57.4 ± 16.6 57.1 ± 17.7 60.2

P14 56.7 ± 10.8 61.3 ± 16.4 52.2 ± 18.8 60.2

P15 51.8 ± 9.3 51.1 ± 13.1 52.2 ± 18.9 60.2

Average 59.3 ± 5.8 59.0 ± 5.3 59.6 ± 7.3

Table 2: Single-trial classification results of the feedback condition (Fc
vs Fe) in terms of accuracy, true negative rate (TNR) and true positive
rate (TPR) for every participant (mean ± std) and their average. The
Fc class was defined as the negative class and the Fe class was
defined as the positive class. The significance-level (SL) indicates
the the upper-limit of the 95% confidence interval of the theoretical
chance-level. Participants whose average measures were above
significance level were marked with ’*’.

amplitude than the correct condition. One possible explanation for
this result is the fact that some participants stopped paying attention
to the color of the given feedback. As the difficulty of the task
was almost inexistent, participants did not rely on the feedback to
evaluate their own performance. Possibly, some of them moved back
to the center of the scene immediately after dropping the object,
hence not paying attention to the feedback.

Regarding the single trial classification accuracy of the ”feedback
error” condition, even though the average results was not signifi-
cantly above chance level, the individual average accuracy of five (5)
participants was significantly above chance level. One hypothesis
may be that these participants, possibly paid closer attention to the
provided feedback, hence eliciting ErrP patterns. Even though this
observation may be encouraging, considering the data at hand, it is
difficult to draw any conclusion regarding the detection of feedback
error. Further investigations should however be conducted in future
work.

Lastly, our results showed that ”Background anomalies” did not
seem to generate any ErrP. One potential explanation could be that
such kind of error had no impact at all on the execution or outcome
of the task. The background anomaly could even remain unnoticed
by some participants. Additionally, the low number of background
anomaly trials can also hinder the results obtained (20 per participant,
before artifact rejection). Thus, additional experiments need be
conducted to further characterize the reactions to this specific kind
of system error.

In addition, a challenge in combining EEG measurements with
VR is the fact that body and eyes movements contaminate the signal
quality. Indeed, in our experiment, some participants’ data was still
contaminated with artifacts, even after artifacts rejection. For most
participants, the tracking condition did not seem affected by artifacts,
as participants were instructed to remain motionless when detecting
a tracking error. No particular instructions were given regarding the
feedback condition nor the background anomaly condition, making
themmore sensitive to artifacts. Additionally, the feedback condition
was associated with the dropping of the object and the start of a new
trial, making it prone to movement and blink artifacts.

Overall, our results confirm previous results about the generation



of ErrPs in Virtual Reality. In our case, tracking errors generated
ErrPs, while background anomalies did not generate any ErrPs.
However, considering the ecological condition of the experiment and
the fact that the participants were free of their movements, chances
are significant that artifacts disrupted the ErrPs signals in some
conditions, even after the artifact rejection procedure. Nevertheless,
our results suggest that tracking errors could be detected in VR/AR
using EEG analysis. This could possibly be due to tracking errors
having higher impact on a user than feedback errors. In the context of
VR/AR applications’ assessment or debugging this would enable to
automatically detect and grade the errors that a user might experience
during a given session.

Moreover, the single-trial classification results for ”feedback con-
dition” were, on average, not significantly above chance-level. Even
though 30% of the subjects were above. This could be a consequence
of the ecological conditions of the study, leading some participants
to stop paying attention to the color of the feedback. The single-
trial classification accuracy for the ”tracking error” condition was
85% and thus significantly above chance-level, for all participants.
This means a very good discrimination between classes ”tracking
error” and ”no tracking error”. Such high-level of detection perfor-
mance is a starting point for asynchronous and real-time decoding
of error-related potentials in VR/AR, as it was shown possible in 2D
paradigms [20, 25, 34].

6 CONCLUSION

In this paper we have explored the possibility to detect error-related
potentials in virtual reality when the system generates an unexpected
error. In particular, we have investigated three types of errors: track-
ing errors, feedback errors and a background anomalies. The differ-
ent errors represented a different aspect on the interaction process
(task, outcome, context) and had a different impact on the realization
of the task. The results indicated that only the errors which had an
impact on the task (tracking losses) were able to generate ErrPs. Ad-
ditionally, we showed that the single trial detection of ErrPs related
to tracking errors in VR was possible with a high accuracy. Taken
together, these results show the viability of using BCIs to detect
high-cost error-related potentials in a VR application which can lead
to different use cases. In the future, this information could be used
for monitoring purposes, in order to detect application flaws, or in
can be used for corrective purposes, in order to automatically correct
errors.
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[18] A. Llera, V. Gómez, and H. J. Kappen. Adaptive classification on brain-

computer interfaces using reinforcement signals. Neural Computation,
24(11):2900–2923, 2012.

[19] A. Llera, M. A. van Gerven, V. Gómez, O. Jensen, and H. J. Kappen.

On the use of interaction error potentials for adaptive brain computer

interfaces. Neural Networks, 24(10):1120–1127, 2011.
[20] C. Lopes-Dias, A. I. Sburlea, and G. R. Müller-Putz. Masked and

unmasked error-related potentials during continuous control and feed-

back. Journal of Neural Engineering, 15(3):036031, apr 2018. doi: 10.
1088/1741-2552/aab806

[21] C. Lopes-Dias, A. I. Sburlea, and G. R. Müller-Putz. Online asyn-

chronous decoding of error-related potentials during the continuous

control of a robot. Scientific Reports, 9(1):17596, 2019. doi: 10.1038/
s41598-019-54109-x

[22] F. Lotte, J. Faller, C. Guger, Y. Renard, G. Pfurtscheller, A. Lécuyer,

and R. Leeb. Combining BCI with Virtual Reality: Towards New

Applications and Improved BCI. In Allison, B. Z., Dunne, Stephen,

Leeb, Robert, Millán, J. D. R., Nijholt, and Anton, eds., Towards
Practical Brain-Computer Interfaces:. Springer, 2013.

[23] G. R. Müller-Putz, R. Scherer, C. Brunner, R. Leeb, and

G. Pfurtscheller. Better than random: a closer look on bci results.

International Journal of Bioelectromagnetism, 2008.

[24] A. Navarro-Cebrian, R. T. Knight, and A. S. Kayser. Error-monitoring

and post-error compensations: dissociation between perceptual failures

and motor errors with and without awareness. Journal of Neuroscience,
33(30):12375–12383, 2013.



[25] J. Omedes, I. Iturrate, J. Minguez, and L. Montesano. Analysis and

asynchronous detection of gradually unfolding errors during monitor-

ing tasks. Journal of Neural Engineering, 12(5):056001, jul 2015. doi:
10.1088/1741-2560/12/5/056001

[26] J. Omedes, I. Iturrate, and L. Montesano. Brain connectivity in contin-

uous error tasks. In 2014 36th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, pp. 3997–4000,
Aug 2014. doi: 10.1109/EMBC.2014.6944500

[27] G. Padrao, M. Gonzalez-Franco, M. V. Sanchez-Vives, M. Slater, and

A. Rodriguez-Fornells. Violating body movement semantics: neural

signatures of self-generated and external-generated errors. Neuroimage,
124:147–156, 2016.

[28] R. Pezzetta, V. Nicolardi, E. Tidoni, and S. M. Aglioti. Error, rather than

its probability, elicits specific electrocortical signatures: a combined

EEG-immersive virtual reality study of action observation. Journal of
neurophysiology, 2018.

[29] G. Pfurtscheller and C. Neuper. Motor imagery and direct brain-

computer communication. Proceedings of the IEEE, 89(7):1123–1134,
2001.

[30] R. N. Roy, S. Bonnet, S. Charbonnier, and A. Campagne. Mental

fatigue and working memory load estimation: interaction and impli-

cations for EEG-based passive bci. In 2013 35th annual international
conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), pp. 6607–6610. IEEE, 2013.

[31] A. F. Salazar-Gomez, J. DelPreto, S. Gil, F. H. Guenther, and D. Rus.

Correcting robot mistakes in real time using EEG signals. In 2017
IEEE International Conference on Robotics and Automation (ICRA),
pp. 6570–6577, May 2017. doi: 10.1109/ICRA.2017.7989777

[32] G. Schalk, J. R. Wolpaw, D. J. McFarland, and G. Pfurtscheller. EEG-

based communication: presence of an error potential. Clinical Neuro-
physiology, 111(12):2138 – 2144, 2000. doi: 10.1016/S1388-2457(00)

00457-0

[33] M. Slater and A. Steed. A virtual presence counter. Presence: Teleop-
erators & Virtual Environments, 9(5):413–434, 2000.
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