145 research outputs found

    Porous silicon & titanium dioxide coatings prepared by atmospheric pressure plasma jet chemical vapour deposition technique-a novel coating technology for photovoltaic modules

    Get PDF
    Atmospheric Pressure Plasma Jet (APPJ) is an alternative for wet processes used to make anti reflection coatings and smooth substrate surface for the PV module. It is also an attractive technique because of it’s high growth rate, low power consumption, lower cost and absence of high cost vacuum systems. This work deals with the deposition of silicon oxide from hexamethyldisiloxane (HMDSO) thin films and titanium dioxide from tetraisopropyl ortho titanate using an atmospheric pressure plasma jet (APPJ) system in open air conditions. A sinusoidal high voltage with a frequency between 19-23 kHz at power up to 1000 W was applied between two tubular electrodes separated by a dielectric material. The jet, characterized by Tg ~ 600-800 K, was mostly laminar (Re ~ 1200) at the nozzle exit and became partially turbulent along the jet axis (Re ~ 3300). The spatially resolved emission spectra showed OH, N2, N2+ and CN molecular bands and O, H, N, Cu and Cr lines as well as the NO2 chemiluminescence continuum (450-800 nm). Thin films with good uniformity on the substrate were obtained at high deposition rate, between 800 -1000 nm.s-1, and AFM results revealed that coatings are relatively smooth (Ra ~ 2 nm). The FTIR and SEM analyses were better used to monitor the chemical composition and the morphology of the films in function of the different experimental conditions. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2790

    Low Surface Energy Fluorocarbon Coatings Via Plasma Polymerization Process: Process Optimization and Protein Repellent Study

    Get PDF
    In the present study, low surface energy perfluorodecyl acrylate (PFDA) coatings and their copolymer coatings with diethylene glycol dimethyl ether (DEGDME) (i.e. PFDA-co-DEGDME) have been deposited through plasma enhanced chemical vapor deposition (PECVD) onto thermanox coverslips in a low pressure tubular inductively coupled RF plasma reactor. The influence of plasma parameters on surface chemical properties of the coatings were investigated by using fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), x-ray photoelectron spectroscopy (XPS) and water contact angle (WCA). The protein repellent properties of the plasma polymer coatings have been investigated using quartz crystal microbalance (QCM).JRC.DG.I.5-Nanobioscience

    Enhancement of NMP degradation under UV light by nitrogen-doped TiO2 thin films using a design of experiment

    Get PDF
    Doping nitrogen within TiO2 is an effective way to enhance visible light photocatalysis due to a direct electron excitation from the N2p states within the band gap. However, nitrogen doping is not always efficient for UV photocatalytic activity. Here, different structures of N-doped TiO2 (TiOxNy) have been prepared by reactive RF (13.56 MHz) magnetron sputtering. The morphological, optical, structural, and photocatalytic properties of the films have been studied in order to investigate the competitive effect of the morphology and the chemical composition on the efficiency of the photocatalytic activity. The variation of surface wettability of the film over time in the dark and under visible and UV irradiation was also studied. The reduction in wettability by dark storage can be explained by the adsorption of hydrocarbon contamination on the thin film’s surface. Additionally, from water contact angle experiments, it was found that these films developed hydrophilic properties upon UV and visible illumination. The photoinduced change in the contact angle of water was due to the removal of hydrocarbon contamination on the surface and also the photo-oxidation of the water droplet. Samples prepared at high pressure gave the best photocatalytic activity, even though the deposition rate was lower at higher pressures (lower film thicknesses), due to the high specific surface area and the optimal presence of TiOxNy crystals in the lattice. However, at low pressure, the TiN crystals became more predominant, and acted as recombination centers for the photo-generated charge carriers. A design of experiments was used in order to optimize the deposition parameters to have the best photocatalytic activity. The high photocatalytic activity under UV light was found to be due to the introduction of discrete energy levels within the band gap, the increased sample wettability, and the higher specific surface area. However, the post annealing process did not effect the activity under UV irradiation. Using the response surface methodology, RSM, based on a design of experiment, DOE, we are able to achieve a good understanding of the complex processes involved in the deposition of the thin films and their effect on the photocatalytic activity. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/930

    Ar/HMDSO/O2 Fed Atmospheric Pressure DBDs: Thin Film Deposition and GC‐MS Investigation of By‐Products

    Get PDF
    The thin film deposition in DBDs fed with Ar/HMDSO/O2 mixtures was studied by comparing the FT-IR spectra of the deposits with the GC-MS analyses of the exhaust gas. Under the experimental conditions investigated, oxygen addition does not enhance the activation of the monomer while it highly influences the chemical composition and structure of the deposited coating as well as the quali-quantitative distribution of by-products in the exhaust. Without oxygen addition a coating with high monomer structure retention is obtained and the exhaust contains several by-products such as silanes, silanols, and linear and cyclic siloxanes. The dimethylsiloxane unit seems to be the most important building block of oligomers. Oxygen addition to the feed is responsible for an intense reduction of the organic character of the coating as well as for a steep decrease, below the quantification limit, of the concentration of all by-products except silanols. Some evidences induce to claim that the silanol groups contained in the deposits are formed through heterogeneous (plasma-surface) reactions

    Modulating calcium phosphate formation using CO2 laser engineering of a polymeric material

    Get PDF
    The use of simulated body fluid (SBF) is widely used as a screening technique to assess the ability of materials to promote calcium phosphate formation. This paper details the use of CO2 laser surface treatment of nylon® 6,6 to modulate calcium phosphate formation following immersion in SBF for 14 days. Through white light interferometry (WLI) it was determined that the laser surface processing gave rise to maximum Ra and Sa parameters of 1.3 and 4.4 µm, respectively. The use of X-ray photoelectron spectroscopy (XPS) enabled a maximum increase in surface oxygen content of 5.6 %at. to be identified. The laser-induced surface modifications gave rise to a modulation in the wettability characteristics such that the contact angle, θ, decreased for the whole area processed samples, as expected, and increased for the patterned samples. The increase in θ can be attributed to a transition in wetting nature to a mixed-state wetting regime. It was seen for all samples that calcium phosphate formed on each surface following 14 days. The largest increase in mass, Δg, owed to calcium phosphate formation, was brought about by the whole area processed sample irradiated with a fluence of 51 Jcm-2. No correlation between the calcium phosphate formation and the laser patterned surface properties was determined due to the likely affect of the mixed-state wetting regime. Strong correlations between θ, the surface energy parameters and the calcium phosphate formation for the whole area processed samples allow one to realize the potential for this surface treatment technique in predicting the bone forming ability of laser processed materials

    Radio-Frequency Plasma Polymerized Biodegradable Carrier for in vivo Release of Cis-Platinum

    Get PDF
    A low pressure plasma process based on plasma deposition has been used to develop a drug delivery strategy. In this study, a drug delivery system based on different layers of plasma co-polymerized Poly ε-caprolactone-Polyethylene glycol (PCL-PEG) co-polymers was deposited on biocompatible substrates. Cis-platinum (118 μgm/cm2) was used as an anti-cancer drug and incorporated for local delivery of the chemotherapeutic agent. The co-polymer layers and their interaction with cancer cells were analyzed by scanning electron microscopy. Our study showed that the plasma-PCL-PEG coated cellophane membranes, in which the drug, was included did not modify the flexibility and appearance of the membranes. This system was actively investigated as an alternative method of controlling localized delivery of drug in vivo. The loading of the anti-cancer drug was investigated by UV-VIS spectroscopy and its release from plasma deposited implants against BALB/c mice liver tissues were analyzed through histological examination and apoptosis by TUNEL assay. The histological examination of liver tissues revealed that when the plasma-modified membranes encapsulated the cis-platinum, the Glisson\u27s capsule and liver parenchyma were damaged. In all cases, inflammatory tissues and fibrosis cells were observed in contact zones between the implant and the liver parenchyma. In conclusion, low pressure plasma deposited uniform nano-layers of the co-polymers can be used for controlled release of the drug in vivo

    On the effects of using CO2 and F2 lasers to modify the wettability of a polymeric biomaterial.

    Get PDF
    Enhancement of the surface properties of a material by means of laser radiation has been amply demonstrated previously. In this work a comparative study for the surface modification of nylon 6,6 has been conducted in order to vary the wettability characteristics using CO2 and excimer lasers. This was done by producing 50 μm spaced (with depths between 1 and 10 μm) trench-like patterns using various laser parameters such as varying the laser power for the CO2 laser and number of pulses for the excimer laser. Topographical changes were analysed using optical microscopy and white light interferometry which indicated that both laser systems can be implemented for modifying the topography of nylon 6,6. Variations in the surface chemistry were evaluated using energy-dispersive X-ray spectroscopy and x-ray photoelectron spectroscopy analysis and showed that the O2 increased by up to 1.5% At. and decreased by up to 1.6% At. for the CO2 and F2 laser patterned samples, respectively. Modification of the wettability characteristics was quantified by measuring the advancing contact angle, which was found to increase in all instances for both laser systems. Emery paper roughened samples were also analysed in the same manner to determine that the topographical pattern played a major role in the wettability characteristics of nylon 6,6. From this, it is proposed that the increase in contact angle for the laser processed samples is due to a mixed intermediate state wetting regime owed to the periodic surface roughness brought about by the laser induced trench-like topographical patterns

    Interaction of CO2 laser-modified nylon with osteoblast cells in relation to wettability

    Get PDF
    It has been amply demonstrated previously that CO2 lasers hold the ability to surface modify various polymers. In addition, it has been observed that these surface enhancements can augment the biomimetic nature of the laser irradiated materials. This research has employed a CO2 laser marker to produce trench and hatch topographical patterns with peak heights of around 1 μm on the surface of nylon 6,6. The patterns generated have been analysed using white light interferometery, optical microscopy and X-ray photoelectron spectroscopy was employed to determine the surface oxygen content. Contact angle measurements were used to characterize each sample in terms of wettability. Generally, it was seen that as a result of laser processing the contact angle, surface roughness and surface oxygen content increased whilst the apparent polar and total surface energies decreased. The increase in contact angle and reduction in surface energy components was found to be on account of a mixed intermediate state wetting regime owing to the change in roughness due to the induced topographical patterns. To determine the biomimetic nature of the modified and as-received control samples each one was seeded with 2×104 cells/ml normal human osteoblast cells and observed after periods of 24 hours and 4 days using optical microscopy and SEM to determine mean cell cover densities and variations in cell morphology. In addition a haeymocytometer was used to show that the cell count for the laser patterned samples had increased by up to a factor of 1.5 compared to the as-received control sample after 4 days of incubation. Significantly, it was determined that all laser-induced patterns gave rise to better cell response in comparison to the as-received control sample studied due to increased preferential cell growth on those surfaces with increased surface roughness

    Design of calcium phosphate scaffolds with controlled simvastatin release by plasma polymerisation

    Get PDF
    Calcium Phosphates (CaPs) have excellent bone regeneration capacity, and their combination with specific drugs is of interest because it allows adding new functionalities. In CaPs, drug release is mainly driven by diffusion, which is strongly affected by the porosity of the matrix and the drug-material interaction. Therefore, it is very difficult to tune their drug release properties beyond their intrinsic properties. Furthermore, when the CaPs are designed as scaffolds, the increased complexity of the macrostructure further complicates the issue.; This work investigates for the first time the use of biocompatible plasma-polymers to provide a tool to control drug release from drug-loaded CaP scaffolds with complex surfaces and intricate 3D structure. Two different CaPs were selected displaying great differences in microstructure: low-temperature CaPs (Calcium-deficient hydroxyapatite cements, CDHA) and sintered CaP ceramics (beta-Tricalcium Phosphate, beta-TCP). The deposition of PCL-co-PEG (1: 4) copolymers on CaPs was achieved by a low pressure plasma process, which allowed coating the inner regions of the scaffolds up to a certain depth. The coating covered the micro and nanopores of the CaPs surface and produced complex geometries presenting a nano and micro rough morphology which lead to low wettability despite the hydrophilicity of the copolymer. Plasma coating with PCL-co-PEG on scaffolds loaded with Simvastatin acid (potentially osteogenic and angiogenic) allowed delaying and modulating the drug release from the bone scaffolds depending on the thickness of the layer deposited, which, in turn depends on the initial specific surface area of the CaP. (C) 2016 Elsevier Ltd. All rights reserved.Peer ReviewedPostprint (author's final draft

    Nanocrystalline SnO2:F Thin Films for Liquid Petroleum Gas Sensors

    Get PDF
    This paper reports the improvement in the sensing performance of nanocrystalline SnO2-based liquid petroleum gas (LPG) sensors by doping with fluorine (F). Un-doped and F-doped tin oxide films were prepared on glass substrates by the dip-coating technique using a layer-by-layer deposition cycle (alternating between dip-coating a thin layer followed by a drying in air after each new layer). The results showed that this technique is superior to the conventional technique for both improving the film thickness uniformity and film transparency. The effect of F concentration on the structural, surface morphological and LPG sensing properties of the SnO2 films was investigated. Atomic Force Microscopy (AFM) and X-ray diffraction pattern measurements showed that the obtained thin films are nanocrystalline SnO2 with nanoscale-textured surfaces. Gas sensing characteristics (sensor response and response/recovery time) of the SnO2:F sensors based on a planar interdigital structure were investigated at different operating temperatures and at different LPG concentrations. The addition of fluorine to SnO2 was found to be advantageous for efficient detection of LPG gases, e.g., F-doped sensors are more stable at a low operating temperature (300 °C) with higher sensor response and faster response/recovery time, compared to un-doped sensor materials. The sensors based on SnO2:F films could detect LPG even at a low level of 25% LEL, showing the possibility of using this transparent material for LPG leak detection
    corecore