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1 – Abstract 

Enhancement of the surface properties of a material by means of laser radiation has been amply 

demonstrated previously. In this work a comparative study for the surface modification of nylon 6,6 has 

been conducted in order to vary the wettability characteristics using CO2 and excimer lasers. This was 

done by producing 50 μm spaced (with depths between 1 and 10 μm) trench-like patterns using various 

laser parameters such as varying the laser power for the CO2 laser and number of pulses for the excimer 

laser. Topographical changes were analysed using optical microscopy and white light interferometry 

which indicated that both laser systems can be implemented for modifying the topography of nylon 6,6. 

Variations in the surface chemistry were evaluated using energy-dispersive X-ray spectroscopy and x-ray 

photoelectron spectroscopy analysis and showed that the O2 increased by up to 1.5% At. and decreased by 

up to 1.6% At. for the CO2 and F2 laser patterned samples, respectively. Modification of the wettability 

characteristics was quantified by measuring the advancing contact angle, which was found to increase in 

all instances for both laser systems. Emery paper roughened samples were also analysed in the same 

manner to determine that the topographical pattern played a major role in the wettability characteristics of 

nylon 6,6. From this, it is proposed that the increase in contact angle for the laser processed samples is 

due to a mixed intermediate state wetting regime owed to the periodic surface roughness brought about by 

the laser induced trench-like topographical patterns. 
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2 – Introduction 

The study of wettability has been a major focal point for many researchers and has been applied to a wide 

range of applications such as biomedical [1-4], coating technologies [5,6] and adhesion [7-9]. As the 

interface between a solid and liquid can be very complex it is necessary to account for the wetting regime 

that takes place. Two of the most common wetting regimes is that of Wenzel and Cassie-Baxter. In most 

instances it is seen that for hydrophilic surfaces (surfaces which provide contact angles of less than 90°) 

the Wenzel wetting regime dominates in which the whole of the liquid wets the surface. For hydrophobic 

surfaces (contact angles greater than 90°) the wetting regime tends to be that of Cassie-Baxter in which 

air-gaps are formed between the liquid-solid interface. However, in some cases it has been seen that it 

may be possible for a hydrophilic surface to give rise to some form of Cassie-Baxter wetting or Cassie-

Baxter/Wenzel mixed intermediate wetting regime owed to the roughness and topographical pattern on 

the surface [10,11]. In this instance it is seen in some cases that increasing the surface roughness, through 

the patterning of a surface, can give rise to an increase in contact angle for hydrophilic materials. On the 



other hand, it has also been observed that in general, when the surface energy and its components are a 

dominant factor, the contact angle is a decreasing function of the polar component of the surface [12].  

Leading on from this it can be seen that it is advantageous for these various applications to devise a 

repeatable technique which would allow material surfaces to be modified in order to optimize that surface 

for the required application. Numerous methods have been developed to produce these modified surfaces. 

Some of these methods are radiation grafting [13], plasma surface modification [14,15] and using various 

coatings [6]. Laser surface modification [16,17] is another process which has the ability to modify both 

the topography and surface chemistry of a material with negligible affect to the bulk properties. In 

comparison to other competing techniques lasers offer a number of benefits such as relative cleanliness, 

accurate processing, non-contact and flexible processing.  

In terms of laser beam interactions with materials, the way a material responds to the incident laser is 

highly dependant upon a number of parameters. Specific to polymers, IR lasers give rise to resonant 

coupling in the form of bond and lattice vibrations allowing for the processing to be thermolytical. This is 

due to the fact that the photon is only weakly absorbed by the polymer, with the energy that has been 

absorbed being distributed to vibrational modes [18]. Whereas, UV lasers tend to give rise to the 

absorption of the light through electronic excitation which is often within delocalized electron 

configurations. In consequence polymers can have broad absorption features and directly break the 

polymer bonds as a result of the high photon energy [19]. With most lasers it is seen that the smallest 

possible features that can be achieved are on the micron scale; however, nano-structures have been 

achieved using a laser emitting at a wavelength of 157nm [20]. These variations in micro and nano-

structured topographies have been seen to have a major influence on the characteristic contact angle that 

arises from the processing [21,22]. In addition, it has also been observed that in some instances the 

surface chemistry dominates the wettability characteristics of a material, such as through the work of 

Kietzig et al. [23] which observed that for metallic surfaces the carbon content appears to have a 

considerable influence on the wettability characteristics.   

Lasers can be employed to produce variations in surface characteristics which can induce a change in 

contact angle, surface energy and surface chemistry. In fact for some applications such as those within the 

biomedical field it has been stated that the characteristic wettability properties may be the driving force in 

determining how certain cells will react to a material [12]. The role of wettability in biomaterials science 

has been one of the most interesting subject areas in biomaterials surface science for a number of years 

and has allowed many to endeavor to determine the complex links between surface wetting and 

bioactivity [24]. This is owed to the fact that the common theme emanating from past work is that in 



many applications it is seen that the bulk properties of a biomaterial are decided upon such that the 

surface properties are compromised [12,25]. Through the available literature it can be seen that extensive 

research is now being carried out regarding this in the attempt to link wettability and bioactivity of 

materials [3,4]. 

Throughout the literature it is seen that a correlation between the laser wavelengths and wettability has 

not been fully established. As such, this paper is the beginning of a long-term study into the variation of 

wettability and the parameters which affect it by using lasers with differing wavelengths. For this research 

CO2 and excimer lasers have been employed and compared to produce surface variations in nylon 6,6 

along with the wettability characteristics being quantified in terms of advancing contact angle, apparent 

surface energies and surface O2 content. 

3 – Experimental Procedures 

3.1 – CO2 Laser System 

In order to generate the required marking pattern, specific software (Winmark software 2.1.0.3468; 

Synrad Inc., USA) to the laser was used. In addition, the software was capable of using images saved as 

.dxf files which can be produced by using CAD programs such as, in this case, Licom AutoCaM. The 

sample material was held in the system with a bracket on a variable z-axis stage and was positioned at the 

focal length, which was 250 mm from the laser aperture to the sample surface. The 10.6 μm wavelength 

cw 10 W CO2 laser system (Synrad Inc., USA), with a spot size of 100 μm, used a galvanometer scanner 

to scan the beam directly across the target material in conjunction with the pattern produced on the 

Synrad software. It should also be noted here that the target material and laser system was held in a laser 

safety cabinet in which the ambient gas was air. Additionally, an extraction system was used to remove 

any fumes produced during laser processing.  

3.2 – F2 Excimer Laser System 

The F2 excimer laser system (LPF 202; Lambda Physik Inc., USA) operated at a wavelength of 157 nm. 

The max pulse energy was 35 mJ and a pulse duration ~ 11 ns (FWHM) at 26 kV charging voltage. 

Samples were irradiated using a projection etching system, see Figure 1, and the lateral position of the 

samples were controlled using computerized stages with typically one micron resolution. The beam 

delivery system consisted of a ~ 2 meter long stainless steel beam tube between the laser and sample 

chamber which was evacuated to expel absorbing oxygen species. Experiments were carried out at 

pressure of around 2×10
-3

 mbar. 



In order to achieve the required trench dimensions an aperture projection mask was produced using 

SS316 foil (Laser Micromachining Ltd., UK). The mask was 30 × 30 mm
2
 and consisted of an array of 

five apertures with a diameter of 0.5 mm in a straight line spaced by 1mm centre to centre. This allowed 

50 μm wide trenches to be etched, spaced by 50 μm upon using a demagnification of 10. 

3.3 – Laser Irradiation Procedures 

The nylon 6,6 was sourced in 100 × 100 mm
2
 sheets with a thickness of 5 mm (Goodfellow Cambridge 

Ltd., UK). To obtain a conveniently sized sample for experimentation, the as-received nylon sheet was 

cut into 30 mm diameter discs using a 1 kW cw CO2 laser (Everlase S48; Coherent Ltd, UK). No 

discernible heat affected zone (HAZ) was observed under optical microscopic examination.  

For the Synrad CO2 laser system, trenches were produced with a spacing of 50 μm between each trench 

by scanning the beam across the target material. To produce these spaces, each experiment was carried 

out twice: firstly using a power of 50% (5 W) with a velocity of 1000 mms
-1

 and secondly using a power 

of 80% (8 W) with the same velocity (sample C10 and C9, respectively). With powers of 5 and 8 W used 

and a spot size of 100 μm the corresponding irradiances used for these experiments were 6.4 and 10.2 

kWcm
-2

 respectively.   

The F2 excimer laser system was used to produce two areas of etched trenches by traversing the stage and 

keeping the beam stationary. The first of these being to achieve an etch depth of approximately 1 μm 

(sample F3) and the second giving a depth of  approximately 10 μm (sample F4). In order to achieve these 

depths each site required 1,000 and 10,000 pulses, respectively, as the etch depth per pulse was 

determined to be approximately 1 nm per pulse. With this in mind it was possible to determine the 

traverse velocities, vt, by using Equation (1). 

N

DR
vt   (1) 

Where D is the diameter of one of the apertures in the mask, R is the repetition rate (which was 20 Hz) 

and N is the number of pulses. Upon using this equation it was determined that for 1 and 10 μm deep 

trenches velocities of 0.01
 
and 0.001 mms

-1
 were to be used, respectively. It should be noted that the when 

carrying out the experiments using the F2 laser a constant fluence of 40 mJcm
-2

 was used.  

For comparison between the laser irradiated samples an as-received reference sample (N6) was also 

studied. This allowed any deviations from the original as-received characteristics to be identified after the 

laser processing had taken place. 



3.4 – Mechanical Roughening Procedure 

For further verification of laser induced contact angle modification two samples were roughened 

manually using DA-F P220 emery paper. One sample was roughened using a zig-zag motion traversing 

from the top to the bottom of the sample (sample R1). The second sample (sample R2) was roughened by 

carrying out the same technique as the first sample, with the addition of rotating the sample through 90° 

and repeating the roughening method with the emery paper. 

3.5 – Topography, Wettability Characteristics and Surface Chemistry Analysis 

After the laser irradiation of the nylon 6,6 samples they were analysed using a number of techniques. An 

optical microscope (Flash 200 Smartscope; OGP Ltd, UK) was used to obtain optical micrographs of the 

samples. The surface profiles were determined using a white light interferometer (WLI) (NewView 500; 

Zygo Ltd, USA) with MetroPro and TalyMap Gold Software. The Zygo WLI was setup using a ×10 

Mirau lens with a zoom of ×0.5 and working distance of 7.6 mm. This system also allowed Sa and Ra 

roughness parameters to be determined for each sample. 

The samples were ultrasonically cleaned in isoproponal (Fisher Scientific Ltd., UK) for 3 minutes at room 

temperature before using a sessile drop device to determine various wettability characteristics, in 

accordance with the procedure detailed by Rance [26]. This was to allow for a relatively clean surface 

prior to any contact angle measurements being taken. A sessile drop device (OCA20; Dataphysics 

Instruments, GmbH) was used in conjunction with specific software (SCA20; Dataphysics Instruments, 

GmbH) so that the recent advancing and receding contact angles for triply distilled water and the recent 

advancing angle for diodomethane could be determined for each sample. By achieving the advancing and 

receding contact angles the hysteresis for the system was determined. This was done by using the ‘needle 

in’ method to accurately add or remove liquid to give the advancing and receding liquid-solid-vapour line, 

respectively. In addition, by knowing the advancing contact angles for the two liquids it was possible to 

use the software to draw a Owens, Wendt, Rabel and Kaeble (OWRK) plot to determine the surface 

energy of the samples. For the two reference liquids the SCA20 software used the Ström et al. technique 

to calculate the surface energy of the material. It should be noted here that 10 contact angles, using 2 

droplets, in each instance was recorded to achieve a mean contact angle for each liquid-surface interface.   

Selected samples were analysed using X-ray photoelectron spectroscopy (XPS), were also sputter coated 

with Au to attain adequate conductance and analysed using scanning electron microscopy (SEM) and 

energy dispersive X-ray (EDX) analysis. This allowed any surface modifications in terms of chemical 

composition due to the laser irradiation to be revealed.     



4 – Results and Discussion 

4.1 – Optical Microscopy Analysis 

In order to effectively and completely compare the laser irradiated samples an optical micrograph of the 

as-received reference sample material was obtained, as can be seen in Figure 2. 

The optical micrograph of the as-received reference sample shown in Figure 2 appears to have a minimal 

surface topography. The black dots on the image arise from the debris from the cutting of the samples and 

as such was removed during the ultrasonic cleaning process.  

It was seen that both laser systems gave the ability to produce relatively good quality μm features on the 

nylon 6,6 samples. With regards to the trenches produced by the CO2  laser, with a distance of 50 μm 

between each trench, it can be seen in Figure 3 that no distinct trench lines had been produced. 

Even so, from Figure 3 it is possible to visualize that the CO2 beam was scanned horizontally across the 

sample. However, as the spot size of the CO2 laser was 100 μm the scan overlapped itself so that no 

distinct periodic grooves were left in the material. In addition to this, gas bubble rupture sites can be seen 

on the surface which is considered to be as a result of the melting and re-solidification of the nylon 6,6 

following CO2 laser processing. Also, as a consequence of the melting the material does not ablate with 

the CO2 laser and as the material re-solidifies it produces a protrusion away from the surface. In 

comparison, the F2 excimer laser produces grooves that were considerably better defined, as can be seen 

in Figure 4. One other major difference that the F2 excimer laser offers is that the trenches were ablated 

and etched into the nylon 6,6 sample.  

4.2 – White Light Inteferometry Analysis 

The Zygo WLI and TalyMap Gold software were employed to elucidate the surface properties of the laser 

irradiated surfaces. Figure 5 shows the continuous axonometric and profile extraction of the as-received 

reference nylon 6,6 sample.  

The continuous axonometric and profile extraction (see Figure 5) shows qualitatively how smooth the 

surface of the nylon 6,6 was prior to laser irradiation. In quantitive terms by utilizing the software the  

roughness parameters for the as-received reference sample were determined to be 0.038 and 0.043 μm for 

Sa and Ra, respectively. The profile extraction (see Figure 5) allowed one to see that maximum peak 

heights of the surface topography was up to 0.3 μm. In comparison, the CO2 laser irradiated samples were 

considerably rougher than the as-received reference sample indicating that considerable surface 

topography changes of nylon 6,6 were possible by utilizing this specific type of laser. Figures 6 and 7 



show continuous axonometric and profile extractions (perpendicular to the grooves) for the CO2 laser 

irradiated samples. 

The surface roughness parameters, Sa and Ra, were determined for each of the surfaces, all of which are 

given in Table 1. The Sa roughness values for the 5 W CO2 laser irradiated nylon surface was found to be 

0.262 μm, whereas the higher power of 8 W gave rise to a slightly rougher surface with an Sa value of 

0.358 μm. In addition, the effect the beam had on the surface topography can be seen more prominently in 

Figures 6 and 7. However, by taking a profile extraction (see Figures 6 and 7) of the surfaces 

perpendicular to the direction of the grooves, it can be seen that there was slight periodicity to the surface 

pattern in comparison to the F2 excimer laser patterned samples (see Figures 8 and 9). This is due to the 

fact that the CO2 laser spot size was larger than the intended surface pattern and the scanned beam 

overlapped during processing inherently eradicating the natural periodicity of the induced pattern. In 

addition, Figures 6 and 7 show that the maximum peak height observed for C10 and C9 were 2 and 3 μm 

respectively, which is considerably larger then that of the as-received reference sample (N6). Even though 

there was little periodicity for the patterned samples shown in Figures 6 and 7, it can be seen that there 

were distinct grooves produced in the nylon 6,6 as a result of the CO2 laser processing. This is more 

discernible when comparing the continuous axonometric images (see Figures 6 and 7) with that of the as-

received reference sample shown in Figure 5, along with the relative profile extraction curves.  

Figures 8 and 9 show the continuous axonometric images for the F2 excimer laser irradiated nylon 

surfaces for different pulse numbers per site. The etched trenches using the F2 excimer laser shown in 

Figures 8 and 9 were considerably more defined than the CO2 laser irradiated samples (see Figures 6 and 

7). In comparison to the CO2 laser irradiated samples the pattern excimer etched into the sample had a 

more distinct periodicity and can be easily identified with the profile extractions as shown in Figures 8 

and 9. The roughness parameter, Sa, for the surface (F3) was found to be 0.248 μm, whereas the 

roughness for F4 was found to be 2.647 μm which was considerably greater than the other three samples 

due to the depth of the trenches being approximately 10 μm. It should be noted that for the other three 

samples the surface features were around 2 to 5 μm as can be seen in the other profile extractions (Figures 

6, 7, 8 and 9). In comparison with the as-received reference sample it can be seen that both lasers are 

capable of increasing the roughness of the surface of nylon 6,6; however, as the F2 excimer laser offers 

better precision and accuracy due to the etch rate for this particular system being of the order of 1 nm per 

pulse it can be seen that the laser-induced topographical pattern can be more accurately controlled with 

the excimer laser. This is contrasted with the CO2 laser system as the surface pattern is dependant on the 

surface melting and resolidifying to produce protrusions out of the surface which gives rise to a noticeable 

level of inaccuracy for the surface topographical pattern. 



4.3 – Effects of Laser Irradiation on the Wettability Characteristics 

As it has already been discussed, it is believed by many that the wettability of a material is the potential 

driving force in regards to the prediction of how a biomaterial will perform within a biological 

environment [3,12,17]. The dynamic advancing contact angles, hysteresis and surface energies for each of 

the samples can be seen in Table 1, along with the roughness parameters Sa, Ra for each sample. 

For all of the laser surface patterned samples it can be seen from Table 1 that the surface roughness has 

been increased considerably  in comparison to the as-received reference sample (N6). That is, the Ra and 

Sa increased by up to 2.9 and 2.6 μm, respectively. The largest roughness values were produced using the 

F2 excimer laser (samples F3 and F4) which can be owed to the fact that deeper trenches were induced 

compared with the features arising from using the CO2 laser marker (samples C10 and C9). It can also be 

seen from Table 1 that the contact angle for each laser patterned sample increased with the F2 excimer 

laser patterned samples giving the largest change with a contact angle of 72.92° for the roughest sample 

(sample F4). This does not concur with current theory as the contact angle should decrease with 

increasing surface roughness for initially hydrophilic materials which have a contact angle less than 90° 

prior to any modifications taking place [12,27]. After CO2 laser irradiation the apparent total surface 

energy, γ
T
, was slightly reduced due to a change in polar, γ

P
, and dispersive, γ

D
, components. It can be 

seen that the apparent γ
P
 increases by up to 4.12 mJm

-2
 for the rougher sample (sample C9), whereas the 

γ
D
 was reduced at most by 12.22 mJm

-2
. As it is γ

P
 of the surface energy that plays the major role in 

determining the contact angle it can be seen that these results also do not correspond with existing theory. 

For instance, Lawrence and Li [25] stated that a laser-induced increase in the γ
P
, along with an increase in 

O2 content, would give rise to a reduction in the contact angle. However, it has been seen that the 

apparent γ
T
 reduces for the CO2 laser patterned nylon 6,6 surfaces and this could correspond with current 

theory as it has previously been observed that the contact angle is inversely proportional to γ
T
 [28]. 

Following on, subsequent to F2 excimer laser patterning γ
T
 and γ

P
 was considerably reduce with γ

P
 

reducing by up to 10 mJm
-2

 (See Table 1). It is highly likely that this rise in contact angle can be 

attributed to the significant reduction of the apparent γ
T
 resulting from an intermediate mixed state 

wetting regime arising from the topographical pattern induced onto the nylon 6,6 samples. This mixed 

state wetting regime was also hypothesized by Lee and Kwon who also observed an increase in contact 

angle for patterned topographies on a hydrophilic surface [10]. 

In order to determine if these changes in surface energies were as a result of variations in surface 

chemistry the samples where analysed using XPS and EDX. Table 1 shows the surface O2 content for all 

of the samples. The as-received reference sample showed that the surface O2 content was initially 11.90% 



At. (20.76% for EDX). In comparison, for the CO2 laser patterned samples the oxygen content had risen 

slightly by up to 1.5% At. (2.03% for EDX), whereas the F2 excimer laser patterned samples had less 

surface oxygen content with a reduction of up to 1.6% At. (4.42% for EDX). The O2 in the ambient air of 

the CO2 system would have allowed oxidation of the surface to occur as the molten nylon re-solidified. 

Additionally, as the  F2 excimer laser system was under vacuum, there would have been a reduction in 

ambient air and as a result the surface would not oxidize and could potentially lose O2 content during the 

laser ablation process. From these results one can deduce that the effect of surface O2 content is not 

conclusive and as such it can be seen that it is more likely that the mixed state wetting regime owed to the 

induced topographical patterns are the dominating factor in this instance. It should also be noted that the 

XPS data showed no other significant amounts of other elements present before or after the laser 

processing, other than carbon and oxygen which are the main constituents of nylon 6,6.    

To clarify how the laser induced patterns effected changes in the characteristic contact angle, two samples 

were mechanically roughened using emery paper, of which the continuous axonometric images can be 

seen in Figure 10 and 11. As a result of the mechanical roughening of the samples it can be seen in Table 

1 that an increase in apparent polar component and roughness has given rise to a significant reduction in 

contact angle, which agrees with Lawrence and Li [25]; that is, the apparent polar component increased 

by up to 4.53 mJm
-2

 and a considerable increase in surface roughness of up to 100 times that of the as-

received reference sample was observed for samples R1 and R2. Also, as given in Table 1 the surface O2 

content for the manually roughened samples was somewhat unchanged in comparison to the as-received 

reference sample, highlighting that the surface roughness, surface energy and topographical pattern have 

more of an impact on the wettability characteristics. This finding can be seen to be of significance as even 

though there was a considerable increase in surface roughness the manually roughened samples (see 

Figures 10 and 11) gave an indication that no periodic pattern was induced on the surface of the nylon 6,6 

samples. In contrast, the laser patterned samples had more periodic patterns relative to the manually 

roughened surfaces and from this it can be seen that the periodic patterns had an extremely large affect on 

the wettability of the samples. As discussed by Jung and Bhushan [29] there are two regimes in which a 

material can wet: the Cassie-Baxter and Wenzel regimes. The Wenzel regime, shown in Figure 12, allows 

the whole sample to be wetted such that the droplet is in complete contact with the surface. On the other 

hand, the Cassie-Baxter regime, shown in Figure 13, allows the droplet to rest upon the roughened surface 

peaks forming air gaps between the droplet and the surface.  

It is proposed here that a change from the Wenzel regime to a mixed state wetting regime was the likely 

reason for the observed increase in the contact angle for the CO2 laser and F2 excimer laser patterned 

nylon 6,6 in accordance with work carried out by others [10,30-32]. That is the liquid, when in contact 



with the sample surface, gives rise to a mixture of Wenzel and Cassie-Baxter regimes. This can be an 

explanation as to how an increase in contact angle was observed for the laser patterned samples and still 

be hydrophilic. Therefore, it has been seen in this instance that the topographical surface pattern appears 

to be the main driver for the manipulation of the wettability characteristics.  

Due to the ability of using these laser systems to manipulate the wettability characteristics further 

research can be carried out by undertaking biological testing of the laser patterned samples. This would 

determine if cell adhesion and proliferation can be optimized by using these lasers to produce surface 

modification in terms of surface chemistry and surface topography. In addition, as nylon 6,6 has a high 

water absorption rate it may be possible to identify, through extended research, whether surface 

modifications using laser technology allows this parameter to be reduced. By experimenting with 

different ambient gases it may also be possible to inflict greater chemical changes on the surface of the 

material allowing for further studies of how the chemical nature of the surface gives rise to the variation 

in contact angle and surface energy. 

5 – Conclusions 

It has been demonstrated that both the CO2 and F2 excimer laser systems that have been employed in this 

study have the ability to modify the surface of nylon 6,6. The CO2 laser couples into the material via 

resonant coupling which gives rise to bond vibrations allowing the temperature to rise and melt the 

material. Upon cooling the molten material re-solidifies and a protrusion away from the surface becomes 

evident on the surface. This is contrasted with the F2 excimer laser as it ablates the nylon 6,6 allowing the 

required pattern to be etched into the material. As a result the F2 excimer laser system offers a major 

advantage over the CO2 in the fact that it ablates approximately 1nm per pulse, with the fluence used in 

this instance, allowing the user to be more precise and accurate with the surface topography they require. 

However, the amount of time it takes to pump the F2 vacuum system to operating pressure and the amount 

of time it takes to produce a number of few μm deep trenches is considerably greater than the CO2 laser 

system employed in this study.  

Both of the laser systems affect differently the nylon 6,6 samples with regards to wettability and surface 

energy parameters – two major factors which are believed to manipulate the bioactivity of a material in 

regards to cell adhesion and proliferation. The CO2 laser has been seen to be capable of producing contact 

angles slightly larger in comparison to the as-received reference sample In this instance, as a result of the 

CO2 laser patterning the surface O2 content increased by up to 1.5% At. and the apparent polar component 

also increased by up to 4.12 mJm
-2

. This does not agree with current theory as an increase in apparent 

polar component and surface O2 content should give rise to a reduction in contact angle. In contrast, for 



the F2 excimer laser patterned samples the apparent polar component and surface O2 content decreased by 

up to 11.69 mJm
-2

 and 1.6% At., respectively. It has been proposed here that the increase in contact angle 

resulting from the laser modifications is due to the patterned topographies, such that they give rise to a 

intermediate mixed state wetting regime in which both Wenzel and Cassie-Baxter regimes arise. This 

allows one to see how the CO2 laser irradiated samples would give a larger contact angle in comparison to 

the as-received reference sample. To aid in clarification, manually roughened samples were analysed 

which showed that for a non-periodic rough surface the apparent polar component increased and surface 

O2 content remained somewhat unchanged giving rise to a reduction in contact angle. Significantly, this 

shows that the surface pattern dominates the wettability characteristics for the laser induced patterned 

nylon 6,6 samples.  
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Figure 1 – Schematic diagram showing the projection etching system used with u being the object 
distance, v being the image distance and f the focal length of the lens.  
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Figure 2 – Optical micrograph of the as-received reference nylon 6,6 sample (Sample N6). 
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Figure 3 – Optical micrograph of  nylon 6,6 CO2 laser irradiated sample using 8 W (10.2 kWcm
-2

), 1000 

mms
-1

 (Sample C9). 
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Figure 4 – Optical micrograph of trenches produced using the F2 excimer laser using 1000 pulses per site, 

a fluence of 40 mJcm
-2

 and a repetition rate of 20 Hz (Sample F3). 
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Figure 5 – Continuous axonometric and profile extraction for the as-received reference sample. (Sample 

N6) 

 

 

 

 

 

 

 

 

 



 

 

Figure 6 – Continuous axonometric and profile extraction for CO2 laser irradiated nylon 6,6 at 5 W (6.4 

kWcm
-2

), 1000 mms
-1

 (Sample C10). 

 

 

 

 

 

 

 

 

 



 

 

Figure 7 – Continuous axonometric and profile extraction for CO2 laser irradiated nylon 6,6 at 8 W (10.2 

kWcm
-2

), 1000 mms
-1

 (Sample C9).     

 

 

 

 

 

 

 



 

 

Figure 8 – Continuous axonometric and profile extraction for F2 excimer laser irradiated nylon 6,6 at 40 

mJcm
-2

 and 1,000 pulses per site (Sample F3). 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 9 – Continuous axonometric and profile extraction for F2 excimer laser irradiated nylon 6,6 at 40 

mJcm
-2

 and 10,000 pulses per site (Sample F4).  

 

 

 

 

 

 

 



 

 

Figure 10 – Continuous axonometric and profile extraction of the first emery paper roughened sample 

(Sample R1). 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 11 – Continuous axonometric and profile extraction of the second emery paper roughened sample 

(Sample R2). 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Figure 12 – Schematic diagram showing a droplet of water on a patterned surface giving rise to the 

Wenzel wetting regime. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Figure 13 – Schematic diagram showing a droplet of water on a patterned surface giving rise to the 

Cassie-Baxter wetting regime. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1 – A summary of the results for the seven samples along with their characteristic contact angle and 

hysteresis with triply distilled water.    

Sample 

ID 

Sa 

 

(μm) 

Ra 

 

(μm) 

γ
P
 

 

(mJm
-2

) 

γ
D
 

 

(mJm
-2

) 

γ
T
 

 

(mJm
-2

) 

Surface O2 

Content 

(%)/(% At.) 

Contact 

Angle 

(°) 

Hysteresis 

 

(°) 

As-Received Reference Sample 

N6 0.038 0.043 20.15 36.12 56.27 20.76/11.90 49.34 19.98 

CO2 Laser Surface Patterned Samples 

C10 0.262 0.346 20.75 27.38 48.13 22.23/12.60 53.91 17.22 

C9 0.358      0.256 24.27 23.90 48.17 22.79/13.20 52.36 19.82 

F2 Excimer Laser Surface Patterned Samples 

F3 0.248 0.253 9.78 37.19 46.98 17.48/10.80 66.67 31.05 

F4 2.647 2.947 8.46 28.44 36.90 16.34/10.30 72.92 40.97 

Manually Roughened Samples 

R1 3.104 2.368 22.57 34.86 57.43 20.70/11.60 43.95 26.01 

R2 3.735 3.055 24.68 36.85 61.53 20.72/11.70 38.37 22.25 

 

 

 

 


