158 research outputs found
Potential sources of particulate iron in surface and deep waters of the terra nova bay (Ross sea, antarctica)
The distribution of particulate Fe (pFe), suspended particulate matter (SPM), and other particulate trace metals were investigated in Terra Nova Bay as part of CDW Effects on glaciaL mElting and on Bulk of Fe in the Western Ross sea (CELEBeR) and Plankton biodiversity and functioning of the Ross Sea ecosystems in a changing Southern Ocean (P-ROSE) projects. Variable concentrations of SPM (0.09–97 mg L−1 ), pFe (0.51–8.70 nM) and other trace metals were found in the Antarctic Surface waters (AASW) layer, where the addition of meltwater contributed to the pool with both lithogenic and biogenic forms. The deeper layer of the water column was occupied by High Salinity Shelf Water (HSSW) and Terra Nova Bay Ice Shelf Water (TISW) encompassing glacial water as confirmed by the lightest δ18 O measured values. The concentration of pFe in TISW (11.7 ± 9.2 nM) was higher than in HSSW samples (5.55 ± 4.43 nM), suggesting that the drainage of material released from glaciers surrounding the area is relevant in terms of pFe contribution. Particulate Fe/Al and Mn/Al ratios were substantially in excess compared with the mean crustal ratios. Microscopic analyses confirmed that more labile Fe oxyhydroxides and authigenic MnO2 phases were present together with biogenic sinking material. Future expected increasing melt rates of these glaciers enlarge Fe input, thus having a greater role in supplying iron and counteracting the reductions in sea ice cover around Terra Nova Bay
Mekarsari Kelurahan Rowosari Kecamatan Tembalang
Being successful enterpreneur is everyone?óÔé¼Ôäós passion. Enterpreneurship can be an alternative way to reach prosperity in life. It needs to be noticed that it takes a lot of effort , passion, patience and creativity to be a succesful?é?á enterpreneur. So many people have great eagerness to be enterpreneur, but they have less knowledge to make it true. That becomes the reason why this training is given to them. It aims to train the people to be more knowledgeable in enterpreneurship. It also trains them to be more creative by recycling?é?á used things to valuable one. It is hoped that this training can be useful for them. They can practice what they have already got in the training in their life. They can produce may new things from the used thing around them and sell them around to make money without money. It will help them to be more prosperous for their financial. ?é?áFurthermore, it will help them to open more job vacancies. This training was acknowledged to the Young Islamic association, Mekarsari,?é?á in Rowosari village. This training provides the young people knowledge, creativity and new experience to create useful and valuable things
Spatial-Related Community Structure and Dynamics in Phytoplankton of the Ross Sea, Antarctica
The Ross Sea exhibits the largest continental shelf and it is considered to be the most productive region in Antarctica, with phytoplankton communities that have so far been considered to be driven by the seasonal dynamics of the polynya, producing the picture of what is considered as the classical Antarctic food web. Nevertheless, the Ross Sea is made up of a complex mosaic of sub-systems, with physical, chemical, and biological features that change on different temporal and spatial scales. Thus, we investigated the phytoplankton community structure of the Ross Sea with a spatial scale, considering the different ecological sub-systems of the region. The total phytoplankton biomass, maximum quantum efficiency (Fv/Fm), size classes, and main functional groups were analyzed in relation to physical–chemical properties of the water column during the austral summer of 2017. Data from our study showed productivity differences between polynyas and other areas, with high values of biomass in Terra Nova Bay (up to 272 mg chl a m–2) and the south-central Ross Sea (up to 177 mg chl a m–2) that contrast with the HNLC nature of the off-shore waters during summer. Diatoms were the dominant group in all the studied subsystems (relative proportion ≥ 50%) except the southern one, where they coexisted with haptophytes with a similar percentage. Additionally, the upper mixed layer depth seemed to influence the level of biomass rather than the dominance of different functional groups. However, relatively high percentages of dinoflagellates (∼30%) were observed in the area near Cape Adare. The temporal variability observed at the repeatedly sampled stations differed among the sub-systems, suggesting the importance of Long-Term Ecological Research (L-TER) sites in monitoring and studying the dynamics of such an important system for the global carbon cycle as the Ross Sea. Our results provide new insights into the spatial distribution and structure of phytoplankton communities, with different sub-systems following alternative pathways for primary production, identifiable by the use of appropriate sampling scales
Bio-Assisted Tailored Synthesis of Plasmonic Silver Nanorings and Site-Selective Deposition on Graphene Arrays
The spontaneous interaction between noble metals and biological scaffolds enables simple and cost-effective synthesis of nanomaterials with unique features. Here, plasmonic silver nanorings are synthesized on a ring-like protein, i.e., a peroxiredoxin (PRX), and used to assemble large arrays of functional nanostructures. The PRX drives the seeding growth of metal silver under wet reducing conditions, yielding nanorings with outer and inner diameters down to 28 and 3 nm, respectively. The obtained hybrid nanostructures are selectively deposited onto a solid-state 2D membrane made of graphene in order to prepare plasmonic nanopores. In particular, the interaction between the graphene and the PRX allows for the simple preparation of ordered arrays of plasmonic nanorings on a 2D-material membrane. This fabrication process can be finalized by drilling a nanometer scale pore in the middle of the ring. Fluorescence spectroscopic measurements in combination with numerical simulations demonstrate the plasmonic effects induced in the metallic nanoring cavity. The prepared nanopores represent one of the first examples of hybrid plasmonic nanopore structures integrated on a 2D-material membrane. The diameter of the nanopore and the atomically thick substrate make this proof-of-concept approach particularly interesting for nanopore-based technologies and applications such as next-generation sequencing and single-molecule detection
High-throughput multimodal wide-field Fourier-transform Raman microscope
Raman microscopy is a powerful analytical technique for materials and life sciences that enables mapping the spatial distribution of the chemical composition of a sample. State-of-the-art Raman microscopes, based on point-scanning frequency-domain detection, have long (∼1 s) pixel dwell times, making it challenging to acquire images of a significant area (e.g., 100×100 μm). Here we present a compact wide-field Raman microscope based on a time-domain Fourier-transform approach, which enables parallel acquisition of the Raman spectra on all pixels of a 2D detector. A common-path birefringent interferometer with exceptional delay stability and reproducibility can rapidly acquire Raman maps (∼30 min for a 250 000 pixel image) with high spatial (<1 μm) and spectral (∼23 cm-1) resolutions. Time-domain detection allows us to disentangle fluorescence and Raman signals, which can both be measured separately. We validate the system by Raman imaging plastic microbeads and demonstrate its multimodal operation by capturing fluorescence and Raman maps of a multilayer-WSe2 sample, providing complementary information on the strain and number of layers of the material
Recommended from our members
The atomic structure of low-index surfaces of the intermetallic compound InPd
The intermetallic compound InPd (CsCl type of crystal structure with a broad compositional range) is considered as a candidate catalyst for the steam reforming of methanol. Single crystals of this phase have been grown to study the structure of its three low-index surfaces under ultra-high vacuum conditions, using low energy electron diffraction (LEED), X-ray photoemission spectroscopy (XPS), and scanning tunneling microscopy (STM). During surface preparation, preferential sputtering leads to a depletion of In within the top few layers for all three surfaces. The near-surface regions remain slightly Pd-rich until annealing to ∼580 K. A transition occurs between 580 and 660 K where In
segregates towards the surface and the near-surface regions become slightly In-rich above ∼660 K. This transition is accompanied by a sharpening of LEED patterns and formation of flat step-terrace morphology, as observed by STM. Several superstructures have been identified for the different surfaces associated with this process. Annealing to higher temperatures (≥750 K) leads to faceting via thermal etching as shown for the (110) surface, with a bulk In composition close to the In-rich limit of the existence domain of the cubic phase. The Pd-rich InPd(111) is found to be consistent with
a Pd-terminated bulk truncation model as shown by dynamical LEED analysis while, after annealing at higher temperature, the In-rich InPd(111) is consistent with an In-terminated bulk truncation, in agreement with density functional theory (DFT) calculations of the relative surface energies. More complex surface structures are observed for the (100) surface. Additionally, individual grains of a polycrystalline sample are characterized by micro-spot XPS and LEED as well as low-energy electron
microscopy. Results from both individual grains and “global” measurements are interpreted based on
comparison to our single crystals findings, DFT calculations and previous literature
Identification and characterization of a novel SCYL3-NTRK1 rearrangement in a colorectal cancer patient
In colorectal cancer patients, chromosomal rearrangements involving NTRK1 gene (encoding the TRKA protein) are shown in a small subset of patients and are associated with the constitutive activation of the kinase domain of TRKA. In turn, activated TRKA-fusion proteins are associated with proliferation and survival in colorectal cancer tumors. Here we report the identification and functional characterization of a new SCYL3-NTRK1 fusion gene in a 61-year-old colorectal cancer patient. To our knowledge, this fusion protein has never been previously documented in oncological patients. We show that this novel fusion is oncogenic and sensitive to TRKA inhibitors. As suggested by other pieces of evidence, entrectinib - an orally available pan- TRK, ROS1 and ALK inhibitor - may have particular efficacy in patients with NTRK rearrangements. Therefore, screening for rearrangements involving NTRK genes may help identifying a subset of patients able to derive benefit from treatment with entrectinib or other targeted inhibitors
The NIDDK Central Repository at 8 years—Ambition, Revision, Use and Impact
The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Central Repository makes data and biospecimens from NIDDK-funded research available to the broader scientific community. It thereby facilitates: the testing of new hypotheses without new data or biospecimen collection; pooling data across several studies to increase statistical power; and informative genetic analyses using the Repository’s well-curated phenotypic data. This article describes the initial database plan for the Repository and its revision using a simpler model. Among the lessons learned were the trade-offs between the complexity of a database design and the costs in time and money of implementation; the importance of integrating consent documents into the basic design; the crucial need for linkage files that associate biospecimen IDs with the masked subject IDs used in deposited data sets; and the importance of standardized procedures to test the integrity data sets prior to distribution. The Repository is currently tracking 111 ongoing NIDDK-funded studies many of which include genotype data, and it houses over 5 million biospecimens of more than 25 types including serum, plasma, stool, urine, DNA, red blood cells, buffy coat and tissue. Repository resources have supported a range of biochemical, clinical, statistical and genetic research (188 external requests for clinical data and 31 for biospecimens have been approved or are pending). Genetic research has included GWAS, validation studies, development of methods to improve statistical power of GWAS and testing of new statistical methods for genetic research. We anticipate that the future impact of the Repository’s resources on biomedical research will be enhanced by (i) cross-listing of Repository biospecimens in additional searchable databases and biobank catalogs; (ii) ongoing deployment of new applications for querying the contents of the Repository; and (iii) increased harmonization of procedures, data collection strategies, questionnaires etc. across both research studies and within the vocabularies used by different repositories
Simultaneous detection of lung fusions using a multiplex RT-PCR next generation sequencing-based approach:A multi-institutional research study
Contains fulltext :
195300.pdf (publisher's version ) (Open Access
- …