77 research outputs found

    PHF3 regulates neuronal gene expression through the Pol II CTD reader domain SPOC

    Get PDF
    The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) is a regulatory hub for transcription and RNA processing. Here, we identify PHD-finger protein 3 (PHF3) as a regulator of transcription and mRNA stability that docks onto Pol II CTD through its SPOC domain. We characterize SPOC as a CTD reader domain that preferentially binds two phosphorylated Serine-2 marks in adjacent CTD repeats. PHF3 drives liquid-liquid phase separation of phosphorylated Pol II, colocalizes with Pol II clusters and tracks with Pol II across the length of genes. PHF3 knock-out or SPOC deletion in human cells results in increased Pol II stalling, reduced elongation rate and an increase in mRNA stability, with marked derepression of neuronal genes. Key neuronal genes are aberrantly expressed in Phf3 knock-out mouse embryonic stem cells, resulting in impaired neuronal differentiation. Our data suggest that PHF3 acts as a prominent effector of neuronal gene regulation by bridging transcription with mRNA decay

    DESENVOLVIMENTO DE OBJETOS DE APRENDIZAGEM NAS ÁREAS DE LÍNGUA PORTUGUESA E MATEMÁTICA

    Get PDF
    Este artigo tem por objetivo apresentar as experiĂȘncias obtidas por docentes e discentesda UNIFRA na produção de objetos de aprendizagem desenvolvidos segundo ametodologia RIVED (Rede Interativa Virtual de Educação) nas ĂĄreas de LĂ­nguaPortuguesa e MatemĂĄtica para aplicação no Ensino BĂĄsico. De forma especifica,apresentaremos os resultados referentes aos objetos: "O plural dos substantivoscompostos separados por hĂ­fen" referente a ĂĄrea de lĂ­ngua portuguesa e "AnĂĄlisecombinatĂłria" referente a ĂĄrea de matemĂĄtica desenvolvidos pelo grupoRIVED/UNIFRA

    Osteocyte deficiency in hip fractures

    Get PDF
    Osteocytes play a central role in the regulation of bone remodeling. The aim of this study was to explore osteocyte function, and particularly the expression of SOST, a Wnt inhibitor, in patients with hip fractures. Serum sclerostin levels were measured by ELISA. The expression of several osteocytic genes was studied by quantitative PCR in trabecular samples of the femoral head of patients with hip fractures, hip osteoarthritis and control subjects. The presence of sclerostin protein and activated caspase 3 was revealed by immunostaining. There were no significant differences in serum sclerostin between the three groups. Patients with fractures have fewer lacunae occupied by osteocytes (60 ± 5% vs. 64 ± 6% in control subjects, P = 0.014) and higher numbers of osteocytes expressing activated caspase 3, a marker of apoptosis. The proportion of sclerostin-positive lacunae was lower in patients with fractures than in control subjects (34 ± 11% vs. 69 ± 10%, P = 2 × 10(-8)). The proportion of sclerostin-positive osteocytes was also lower in patients. RNA transcripts of SOST, FGF23 and PHEX were also less abundant in fractures than in control bones (P = 0.002, 5 × 10(-6), and 0.04, respectively). On the contrary, in patients with osteoarthritis, there was a decreased expression of SOST and FGF23, without differences in PHEX transcripts or osteocyte numbers. Osteocyte activity is altered in patients with hip fractures, with increased osteocyte apoptosis and reduced osteocyte numbers, as well as decreased transcription of osteocytic genes. Therefore, these results suggest that an osteocyte deficiency may play a role in the propensity to hip fractures

    A pilot study comparing two weight loss maintenance interventions among low-income, mid-life women

    Get PDF
    BACKGROUND: Despite high obesity prevalence rates, few low-income midlife women participate in weight loss maintenance trials. This pilot study aims to assess the effectiveness of two weight loss maintenance interventions in this under-represented population. METHODS: Low-income midlife women who completed a 16-week weight loss intervention and lost ≄ 8 lbs (3.6 kg) were eligible to enroll in one of two 12-month maintenance programs. The programs were similar in content and had the same number of total contacts, but were different in the contact modality (Phone + Face-to-Face vs. Face-to-Face Only). Two criteria were used to assess successful weight loss maintenance at 12 months: (1) retaining a loss of ≄ 5% of body weight from the start of the weight loss phase and (2) a change in body weight of < 3%, from the start to the end of the maintenance program. Outcome measures of changes in physiologic and psychosocial factors, and evaluations of process measures and program acceptability (measured at 12 months) are also reported. For categorical variables, likelihood ratio or Fisher’s Exact (for small samples) tests were used to evaluate statistically significant relationships; for continuous variables, t-tests or their equivalents were used to assess differences between means and also to identify correlates of weight loss maintenance. RESULTS: Overall, during the 12-month maintenance period, 41% (24/58) of participants maintained a loss of ≄ 5% of initial weight and 43% (25/58) had a <3% change in weight. None of the comparisons between the two maintenance programs were statistically significant. However, improvements in blood pressure and dietary behaviors remained significant at the end of the 12-month maintenance period for participants in both programs. Participant attendance and acceptability were high for both programs. CONCLUSIONS: The effectiveness of two pilot 12-month maintenance interventions provides support for further research in weight loss maintenance among high-risk, low-income women. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT0028830

    Weight Loss During the Intensive Intervention Phase of the Weight-Loss Maintenance Trial

    Get PDF
    To improve methods for long-term weight management, the Weight Loss Maintenance (WLM) trial, a four-center randomized trial, was conducted to compare alternative strategies for maintaining weight loss over a 30-month period. This paper describes methods and results for the initial 6-month weight-loss program (Phase I)

    microRNA-122 stimulates translation of hepatitis C virus RNA

    Get PDF
    Hepatitis C virus (HCV) is a positive strand RNA virus that propagates primarily in the liver. We show here that the liver-specific microRNA-122 (miR-122), a member of a class of small cellular RNAs that mediate post-transcriptional gene regulation usually by repressing the translation of mRNAs through interaction with their 3â€Č-untranslated regions (UTRs), stimulates the translation of HCV. Sequestration of miR-122 in liver cell lines strongly reduces HCV translation, whereas addition of miR-122 stimulates HCV translation in liver cell lines as well as in the non-liver HeLa cells and in rabbit reticulocyte lysate. The stimulation is conferred by direct interaction of miR-122 with two target sites in the 5â€Č-UTR of the HCV genome. With a replication-defective NS5B polymerase mutant genome, we show that the translation stimulation is independent of viral RNA synthesis. miR-122 stimulates HCV translation by enhancing the association of ribosomes with the viral RNA at an early initiation stage. In conclusion, the liver-specific miR-122 may contribute to HCV liver tropism at the level of translation

    Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors.

    Get PDF
    Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.The Fenland Study is funded by the Medical Research Council (MC_U106179471) and Wellcome Trust
    • 

    corecore