11 research outputs found

    The Effect of Chronic Hypertension on Neuropathology in the TGSWDI Mouse Model of Alzheimer\u27s Disease

    Get PDF
    Numerous epidemiological studies link vascular disorders, such as hypertension, diabetes and stroke, with Alzheimer’s disease. Hypertension, specifically, is an important modifiable risk factor for late onset Alzheimer’s disease. Despite the abundance of clinical data connecting these conditions, animal studies investigating the connection between the two are lacking. To examine the link between midlife hypertension and the onset of Alzheimer’s disease later in life, chronic hypertension was induced in the TgSwDI mouse model of Alzheimer’s disease in early adulthood using long-term administration of the eNOS inhibitor, N ω-Nitro-L-arginine methyl ester hydrochloride (L-NAME). L-NAME treatment accelerated cognitive deficits, microvascular deposition of the amyloidbeta peptide, vascular inflammation, blood brain barrier leakage, and pericyte loss in these mice. Though lysosomal markers were increased in hypertensive TgSwDI mice relative to all other groups, autophagic structures appeared to be increased in both hypertensive TgSwDI mice, as well as hypertensive WT mice. The increased presence of these structures altered cellular morphology at the neurovascular unit and compromised the blood brain barrier in hypertensive mice. Additionally, midlife hypertension induced hippocampal neurodegeneration at an early age in TgSwDI mice. Neuronal loss is a defining characteristic of pathology in Alzheimer’s disease, but is not replicated in many mouse models of the disease. Therefore, this may be a useful research model of Alzheimer’s disease with mixed vascular and amyloid pathologies and may display classical features of the disease missing in more canonical mouse models

    Automated detection of GFAP-labeled astrocytes in micrographs using YOLOv5

    Get PDF
    Astrocytes, a subtype of glial cells with a complex morphological structure, are active players in many aspects of the physiology of the central nervous system (CNS). However, due to their highly involved interaction with other cells in the CNS, made possible by their morphological complexity, the precise mechanisms regulating astrocyte function within the CNS are still poorly understood. This knowledge gap is also due to the current limitations of existing quantitative image analysis tools that are unable to detect and analyze images of astrocyte with sufficient accuracy and efficiency. To address this need, we introduce a new deep learning framework for the automated detection of GFAP-immunolabeled astrocytes in brightfield or fluorescent micrographs. A major novelty of our approach is the applications of YOLOv5, a sophisticated deep learning platform designed for object detection, that we customized to derive optimized classification models for the task of astrocyte detection. Extensive numerical experiments using multiple image datasets show that our method performs very competitively against both conventional and state-of-the-art methods, including the case of images where astrocytes are very dense. In the spirit of reproducible research, our numerical code and annotated data are released open source and freely available to the scientific community.National Science Foundation ; National Institutes of Healt

    Hypofunctional Dopamine Uptake and Antipsychotic Treatment-Resistant Schizophrenia

    Get PDF
    Antipsychotic treatment resistance in schizophrenia remains a major issue in psychiatry. Nearly 30% of patients with schizophrenia do not respond to antipsychotic treatment, yet the underlying neurobiological causes are unknown. All effective antipsychotic medications are thought to achieve their efficacy by targeting the dopaminergic system. Here we review early literature describing the fundamental mechanisms of antipsychotic drug efficacy, highlighting mechanistic concepts that have persisted over time. We then reconsider the original framework for understanding antipsychotic efficacy in light of recent advances in our scientific understanding of the dopaminergic effects of antipsychotics. Based on these new insights, we describe a role for the dopamine transporter in the genesis of both antipsychotic therapeutic response and primary resistance. We believe that this discussion will help delineate the dopaminergic nature of antipsychotic treatment-resistant schizophrenia

    Accumbens D2-MSN hyperactivity drives antipsychotic-induced behavioral supersensitivity

    Get PDF
    Antipsychotic-induced dopamine supersensitivity, or behavioral supersensitivity, is a problematic consequence of long-term antipsychotic treatment characterized by the emergence of motor abnormalities, refractory symptoms, and rebound psychosis. The underlying mechanisms are unclear and no approaches exist to prevent or reverse these unwanted effects of antipsychotic treatment. Here we demonstrate that behavioral supersensitivity stems from long-lasting pre, post and perisynaptic plasticity, including insertion of Ca2+-permeable AMPA receptors and loss of D2 receptor-dependent inhibitory postsynaptic currents (IPSCs) in D2 receptor-expressing medium spiny neurons (D2-MSNs) in the nucleus accumbens core (NAcore). The resulting hyperexcitability, prominent in a subpopulation of D2-MSNs (21%), caused locomotor sensitization to cocaine and was associated with behavioral endophenotypes of antipsychotic treatment resistance and substance use disorder, including disrupted extinction learning and augmented cue-induced cocaine-seeking behavior. Chemogenetic restoration of IPSCs in D2-MSNs in the NAcore was sufficient to prevent antipsychotic-induced supersensitivity, pointing to an entirely novel therapeutic direction for overcoming this condition

    Long-Term Dabigatran Treatment Delays Alzheimer's Disease Pathogenesis in the TgCRND8 Mouse Model

    Get PDF
    BACKGROUND: Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder with important vascular and hemostatic alterations that should be taken into account during diagnosis and treatment. OBJECTIVES: This study evaluates whether anticoagulation with dabigatran, a clinically approved oral direct thrombin inhibitor with a low risk of intracerebral hemorrhage, ameliorates AD pathogenesis in a transgenic mouse model of AD. METHODS: TgCRND8 AD mice and their wild-type littermates were treated for 1 year with dabigatran etexilate or placebo. Cognition was evaluated using the Barnes maze, and cerebral perfusion was examined by arterial spin labeling. At the molecular level, Western blot and histochemical analyses were performed to analyze fibrin content, amyloid burden, neuroinflammatory activity, and blood-brain barrier (BBB) integrity. RESULTS: Anticoagulation with dabigatran prevented memory decline, cerebral hypoperfusion, and toxic fibrin deposition in the AD mouse brain. In addition, long-term dabigatran treatment significantly reduced the extent of amyloid plaques, oligomers, phagocytic microglia, and infiltrated T cells by 23.7%, 51.8%, 31.3%, and 32.2%, respectively. Dabigatran anticoagulation also prevented AD-related astrogliosis and pericyte alterations, and maintained expression of the water channel aquaporin-4 at astrocytic perivascular endfeet of the BBB. CONCLUSIONS: Long-term anticoagulation with dabigatran inhibited thrombin and the formation of occlusive thrombi in AD; preserved cognition, cerebral perfusion, and BBB function; and ameliorated neuroinflammation and amyloid deposition in AD mice. Our results open a field for future investigation on whether the use of direct oral anticoagulants might be of therapeutic value in AD.This work was funded by a Proof-of-Concept Award from the Robertson Therapeutic Development Fund (Dr. Cortes-Canteli), The Rockefeller University; NINDS/NIH grant NIS106668 (Drs. Norris and Strickland); European Union’s Seventh Framework Programme (FP7-PEOPLE-2013-IIF), grant agreement n PIIF-GA-2013-624811 (Drs. Cortes-Canteli and Fuster), CNIC, Madrid, Spain; Miguel Servet type I research contract (CP16/00174 and MS16/00174 [Dr. Cortes-Canteli]), Instituto de Salud Carlos III (ISCIII), CNIC; Iniciativa de Empleo Juvenil (PEJ16/MED/TL-1231 [A. Marcos-Diaz] and PEJ-2018-AI/BMD-11477 [C. Ceron]) from Consejería de Educación, Juventud y Deporte de la Comunidad de Madrid; European Regional Development Funds (FEDER “Una manera de hacer Europa”) and European Social Funds (FSE “El FSE invierte en tu futuro”); and with the support of the Marie Curie Alumni Association (Dr. Cortes-Canteli). The CNIC is supported by the ISCIII, the Spanish Ministerio de Ciencia, Innovación y Universidades (MCNU), and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505). CIC biomaGUNE is a Maria de Maeztu Unit of Excellence (MDM-2017-0720). Dr. Sanchez-Gonzalez is an employee of Philips Healthcare. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose.S

    Astrocyte Heterogeneity in Regulation of Synaptic Activity

    No full text
    Our awareness of the number of synapse regulatory functions performed by astroglia is rapidly expanding, raising interesting questions regarding astrocyte heterogeneity and specialization across brain regions. Whether all astrocytes are poised to signal in a multitude of ways, or are instead tuned to surrounding synapses and how astroglial signaling is altered in psychiatric and cognitive disorders are fundamental questions for the field. In recent years, molecular and morphological characterization of astroglial types has broadened our ability to design studies to better analyze and manipulate specific functions of astroglia. Recent data emerging from these studies will be discussed in depth in this review. I also highlight remaining questions emerging from new techniques recently applied toward understanding the roles of astrocytes in synapse regulation in the adult brain

    Mutations in the Drosophila Mitochondrial tRNA Amidotransferase, bene/gatA, Cause Growth Defects in Mitotic and Endoreplicating Tissues

    No full text
    Rapid larval growth is essential in the development of most metazoans. In this article, we show that bene, a gene previously identified on the basis of its oogenesis defects, is also required for larval growth and viability. We show that all bene alleles disrupt gatA, which encodes the Drosophila homolog of glutamyl-tRNA(Gln) amidotransferase subunit A (GatA). bene alleles are now referred to as gatA. GatA proteins are highly conserved throughout eukaryotes and many prokaryotes. These enzymes are required for proper translation of the proteins encoded by the mitochondrial genome and by many eubacterial genomes. Mitotic and endoreplicating tissues in Drosophila gatA loss-of-function mutants grow slowly and never achieve wild-type size, and gatA larvae die before pupariation. gatA mutant eye clones exhibit growth and differentiation defects, indicating that gatA expression is required cell autonomously for normal growth. The gatA gene is widely expressed in mitotic and endoreplicating tissues
    corecore