14 research outputs found

    Quality control and beam test of GEM detectors for future upgrades of the CMS muon high rate region at the LHC

    Get PDF
    Gas Electron Multipliers (GEM) are a proven position sensitive gas detector technology which nowadays is becoming more widely used in High Energy Physics. GEMs offer an excellent spatial resolution and a high particle rate capability, with a close to 100% detection efficiency. In view of the high luminosity phase of the CERN Large Hadron Collider, these aforementioned features make GEMs suitable candidates for the future upgrades of the Compact Muon Solenoid (CMS) detector. In particular, the CMS GEM Collaboration proposes to cover the high-eta region of the muon system with large-area triple-GEM detectors, which have the ability to provide robust and redundant tracking and triggering functions. In this contribution, after a general introduction and overview of the project, the construction of full-size trapezoidal triple-GEM prototypes will be described in more detail. The procedures for the quality control of the GEM foils, including gain uniformity measurements with an x-ray source will be presented. In the past few years, several CMS triple-GEM prototype detectors were operated with test beams at the CERN SPS. The results of these test beam campaigns will be summarised

    Development and performance of Triple-GEM detectors for the upgrade of the muon system of the CMS experiment

    Get PDF
    The CMS Collaboration is evaluating GEM detectors for the upgrade of the muon system. This contribution will focus on the R&D performed on chambers design features and will discuss the performance of the upgraded detector

    Concentration Dependent Ion Selectivity in VDAC: A Molecular Dynamics Simulation Study

    Get PDF
    The voltage-dependent anion channel (VDAC) forms the major pore in the outer mitochondrial membrane. Its high conducting open state features a moderate anion selectivity. There is some evidence indicating that the electrophysiological properties of VDAC vary with the salt concentration. Using a theoretical approach the molecular basis for this concentration dependence was investigated. Molecular dynamics simulations and continuum electrostatic calculations performed on the mouse VDAC1 isoform clearly demonstrate that the distribution of fixed charges in the channel creates an electric field, which determines the anion preference of VDAC at low salt concentration. Increasing the salt concentration in the bulk results in a higher concentration of ions in the VDAC wide pore. This event induces a large electrostatic screening of the charged residues promoting a less anion selective channel. Residues that are responsible for the electrostatic pattern of the channel were identified using the molecular dynamics trajectories. Some of these residues are found to be conserved suggesting that ion permeation between different VDAC species occurs through a common mechanism. This inference is buttressed by electrophysiological experiments performed on bean VDAC32 protein akin to mouse VDAC

    Quality control and beam test of GEM detectors for future upgrades of the CMS muon high rate region at the LHC

    Get PDF
    Gas Electron Multipliers (GEM) are a proven position sensitive gas detector technology which nowadays is becoming more widely used in High Energy Physics. GEMs offer an excellent spatial resolution and a high particle rate capability, with a close to 100% detection efficiency. In view of the high luminosity phase of the CERN Large Hadron Collider, these aforementioned features make GEMs suitable candidates for the future upgrades of the Compact Muon Solenoid (CMS) detector. In particular, the CMS GEM Collaboration proposes to cover the high-eta region of the muon system with large-area triple-GEM detectors, which have the ability to provide robust and redundant tracking and triggering functions. In this contribution, after a general introduction and overview of the project, the construction of full-size trapezoidal triple-GEM prototypes will be described in more detail. The procedures for the quality control of the GEM foils, including gain uniformity measurements with an x-ray source will be presented. In the past few years, several CMS triple-GEM prototype detectors were operated with test beams at the CERN SPS. The results of these test beam campaigns will be summarised

    A study of film and foil materials for the GEM detector proposed for the CMS muon system upgrade

    No full text
    During the next shutdown of the LHC at CERN, the CMS experiment plans to start installing GEM detectors in the endcap (high pseudorapidity) region. These muon detectors have excellent spatial and temporal resolution as well as a high chemical stability and radiation hardness. A report is given on preliminary results of materials studies that aimed to fully characterize the GEM detector components before and after the exposure to a high-radiation environment. © CERN 2014 for the benefit of the CMS collaboration..SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Physics motivations and expected performance of the CMS muon system upgrade with triple-GEM detectors

    No full text
    For the LHC High Luminosity phase (HL-LHC) the CMS GEM Collaboration is planning to in- stall new large size triple-GEM detectors in the forward region of the muon system (1.5< j h |<2.2) of the CMS detector. The muon reconstruction with triple-GEM chambers information included have been successfully integrated in the official CMS software, allowing physics studies to be carried out. The new sub-detector will be able to cope the extreme particle rates expected in this region along with a high spatial resolution. The resulting benefit in terms of triggering and tracking capabilities has been studied: the expected improvement in the performance of the muon identification and track reconstruction as well as the expected improvement coming from the low- ering of the muon p T trigger tresholds will be presented. The contribution will review the status of the CMS upgrade project with the usage of GEM detector, discussing the trigger, the muon reconstruction performance and the impact on the physics analyses

    C. Literaturwissenschaft.

    No full text
    corecore