35 research outputs found

    L-band Integral Field Spectroscopy of the HR 8799 Planetary System

    Get PDF
    Understanding the physical processes sculpting the appearance of young gas-giant planets is complicated by degeneracies confounding effective temperature, surface gravity, cloudiness, and chemistry. To enable more detailed studies, spectroscopic observations covering a wide range of wavelengths is required. Here we present the first L-band spectroscopic observations of HR 8799 d and e and the first low-resolution wide bandwidth L-band spectroscopic measurements of HR 8799 c. These measurements were facilitated by an upgraded LMIRCam/ALES instrument at the LBT, together with a new apodizing phase plate coronagraph. Our data are generally consistent with previous photometric observations covering similar wavelengths, yet there exists some tension with narrowband photometry for HR 8799 c. With the addition of our spectra, each of the three innermost observed planets in the HR 8799 system have had their spectral energy distributions measured with integral field spectroscopy covering 0.9\sim0.9 to 4.1 μm4.1~\mu\mathrm{m}. We combine these spectra with measurements from the literature and fit synthetic model atmospheres. We demonstrate that the bolometric luminosity of the planets is not sensitive to the choice of model atmosphere used to interpolate between measurements and extrapolate beyond them. Combining luminosity with age and mass constraints, we show that the predictions of evolutionary models are narrowly peaked for effective temperature, surface gravity, and planetary radius. By holding these parameters at their predicted values, we show that more flexible cloud models can provide good fits to the data while being consistent with the expectations of evolutionary models.Comment: 19 pages, 11 figures, accepted for publication in The Astronomical Journal; added reference, updated figure 6 and table

    Direct images and spectroscopy of a giant protoplanet driving spiral arms in MWC 758

    Full text link
    Understanding the driving forces behind spiral arms in protoplanetary disks remains a challenge due to the faintness of young giant planets. MWC 758 hosts such a protoplanetary disk with a two-armed spiral pattern that is suggested to be driven by an external giant planet. We present new thermal infrared observations that are uniquely sensitive to redder (i.e., colder or more attenuated) planets than past observations at shorter wavelengths. We detect a giant protoplanet, MWC 758c, at a projected separation of ~100 au from the star. The spectrum of MWC 758c is distinct from the rest of the disk and consistent with emission from a planetary atmosphere with Teff = 500 +/- 100 K for a low level of extinction (AV<30), or a hotter object with a higher level of extinction. Both scenarios are commensurate with the predicted properties of the companion responsible for driving the spiral arms. MWC 758c provides evidence that spiral arms in protoplanetary disks can be caused by cold giant planets or by those whose optical emission is highly attenuated. MWC 758c stands out both as one of the youngest giant planets known, and also as one of the coldest and/or most attenuated. Furthermore, MWC 758c is among the first planets to be observed within a system hosting a protoplanetary disk.Comment: Published in Nature Astronom

    Pelvic trauma : WSES classification and guidelines

    Get PDF
    Complex pelvic injuries are among the most dangerous and deadly trauma related lesions. Different classification systems exist, some are based on the mechanism of injury, some on anatomic patterns and some are focusing on the resulting instability requiring operative fixation. The optimal treatment strategy, however, should keep into consideration the hemodynamic status, the anatomic impairment of pelvic ring function and the associated injuries. The management of pelvic trauma patients aims definitively to restore the homeostasis and the normal physiopathology associated to the mechanical stability of the pelvic ring. Thus the management of pelvic trauma must be multidisciplinary and should be ultimately based on the physiology of the patient and the anatomy of the injury. This paper presents the World Society of Emergency Surgery (WSES) classification of pelvic trauma and the management Guidelines.Peer reviewe

    The First Post-Kepler Brightness Dips of KIC 8462852

    Get PDF
    We present a photometric detection of the first brightness dips of the unique variable star KIC 8462852 since the end of the Kepler space mission in 2013 May. Our regular photometric surveillance started in October 2015, and a sequence of dipping began in 2017 May continuing on through the end of 2017, when the star was no longer visible from Earth. We distinguish four main 1-2.5% dips, named "Elsie," "Celeste," "Skara Brae," and "Angkor", which persist on timescales from several days to weeks. Our main results so far are: (i) there are no apparent changes of the stellar spectrum or polarization during the dips; (ii) the multiband photometry of the dips shows differential reddening favoring non-grey extinction. Therefore, our data are inconsistent with dip models that invoke optically thick material, but rather they are in-line with predictions for an occulter consisting primarily of ordinary dust, where much of the material must be optically thin with a size scale <<1um, and may also be consistent with models invoking variations intrinsic to the stellar photosphere. Notably, our data do not place constraints on the color of the longer-term "secular" dimming, which may be caused by independent processes, or probe different regimes of a single process

    The First Post-Kepler Brightness Dips of KIC 8462852

    Full text link

    Pelvic trauma: WSES classification and guidelines

    Full text link

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF
    corecore