113 research outputs found

    Observation of playa salts as nuclei in orographic wave clouds

    Get PDF
    During the Ice in Clouds Experiment-Layer Clouds (ICE-L), dry lakebed, or playa, salts from the Great Basin region of the United States were observed as cloud nuclei in orographic wave clouds over Wyoming. Using a counterflow virtual impactor in series with a single-particle mass spectrometer, sodium-potassium-magnesium-calcium-chloride salts were identified as residues of cloud droplets. Importantly, these salts produced similar mass spectral signatures to playa salts with elevated cloud condensation nuclei (CCN) efficiencies close to sea salt. Using a suite of chemical characterization instrumentation, the playa salts were observed to be internally mixed with oxidized organics, presumably produced by cloud processing, as well as carbonate. These salt particles were enriched as residues of large droplets (>19 μm) compared to smaller droplets (>7 μm). In addition, a small fraction of silicate-containing playa salts were hypothesized to be important in the observed heterogeneous ice nucleation processes. While the high CCN activity of sea salt has been demonstrated to play an important role in cloud formation in marine environments, this study provides direct evidence of the importance of playa salts in cloud formation in continental North America has not been shown previously. Studies are needed to model and quantify the impact of playas on climate globally, particularly because of the abundance of playas and expected increases in the frequency and intensity of dust storms in the future due to climate and land use changes

    Whole Genome Pyrosequencing of Rare Hepatitis C Virus Genotypes Enhances Subtype Classification and Identification of Naturally Occurring Drug Resistance Variants

    Get PDF
    Background. Infection with hepatitis C virus (HCV) is a burgeoning worldwide public health problem, with 170 million infected individuals and an estimated 20 million deaths in the coming decades. While 6 main genotypes generally distinguish the global geographic diversity of HCV, a multitude of closely related subtypes within these genotypes are poorly defined and may influence clinical outcome and treatment options. Unfortunately, the paucity of genetic data from many of these subtypes makes time-consuming primer walking the limiting step for sequencing understudied subtypes. Methods. Here we combined long-range polymerase chain reaction amplification with pyrosequencing for a rapid approach to generate the complete viral coding region of 31 samples representing poorly defined HCV subtypes. Results. Phylogenetic classification based on full genome sequences validated previously identified HCV subtypes, identified a recombinant sequence, and identified a new distinct subtype of genotype 4. Unlike conventional sequencing methods, use of deep sequencing also facilitated characterization of minor drug resistance variants within these uncommon or, in some cases, previously uncharacterized HCV subtypes. Conclusions. These data aid in the classification of uncommon HCV subtypes while also providing a high-resolution view of viral diversity within infected patients, which may be relevant to the development of therapeutic regimens to minimize drug resistanc

    Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders

    Get PDF
    Personality is influenced by genetic and environmental factors1 and associated with mental health. However, the underlying genetic determinants are largely unknown. We identified six genetic loci, including five novel loci2,3, significantly associated with personality traits in a meta-analysis of genome-wide association studies (N = 123,132–260,861). Of these genomewide significant loci, extraversion was associated with variants in WSCD2 and near PCDH15, and neuroticism with variants on chromosome 8p23.1 and in L3MBTL2. We performed a principal component analysis to extract major dimensions underlying genetic variations among five personality traits and six psychiatric disorders (N = 5,422–18,759). The first genetic dimension separated personality traits and psychiatric disorders, except that neuroticism and openness to experience were clustered with the disorders. High genetic correlations were found between extraversion and attention-deficit– hyperactivity disorder (ADHD) and between openness and schizophrenia and bipolar disorder. The second genetic dimension was closely aligned with extraversion–introversion and grouped neuroticism with internalizing psychopathology (e.g., depression or anxiety)

    Unacceptable failures: the final report of the <em>Lancet</em> Commission into liver disease in the UK

    Get PDF
    This final report of the Lancet Commission into liver disease in the UK stresses the continuing increase in burden of liver disease from excess alcohol consumption and obesity, with high levels of hospital admissions which are worsening in deprived areas. Only with comprehensive food and alcohol strategies based on fiscal and regulatory measures (including a minimum unit price for alcohol, the alcohol duty escalator, and an extension of the sugar levy on food content) can the disease burden be curtailed. Following introduction of minimum unit pricing in Scotland, alcohol sales fell by 3%, with the greatest effect on heavy drinkers of low-cost alcohol products. We also discuss the major contribution of obesity and alcohol to the ten most common cancers as well as measures outlined by the departing Chief Medical Officer to combat rising levels of obesity—the highest of any country in the west. Mortality of severely ill patients with liver disease in district general hospitals is unacceptably high, indicating the need to develop a masterplan for improving hospital care. We propose a plan based around specialist hospital centres that are linked to district general hospitals by operational delivery networks. This plan has received strong backing from the British Association for Study of the Liver and British Society of Gastroenterology, but is held up at NHS England. The value of so-called day-case care bundles to reduce high hospital readmission rates with greater care in the community is described, along with examples of locally derived schemes for the early detection of disease and, in particular, schemes to allow general practitioners to refer patients directly for elastography assessment. New funding arrangements for general practitioners will be required if these proposals are to be taken up more widely around the country. Understanding of the harm to health from lifestyle causes among the general population is low, with a poor knowledge of alcohol consumption and dietary guidelines. The Lancet Commission has serious doubts about whether the initiatives described in the Prevention Green Paper, with the onus placed on the individual based on the use of information technology and the latest in behavioural science, will be effective. We call for greater coordination between official and non-official bodies that have highlighted the unacceptable disease burden from liver disease in England in order to present a single, strong voice to the higher echelons of government

    All-mass n-gon integrals in n dimensions

    Get PDF
    We explore the correspondence between one-loop Feynman integrals and (hyperbolic) simplicial geometry to describe the "all-mass" case: integrals with generic external and internal masses. Specifically, we focus on nn-particle integrals in exactly nn space-time dimensions, as these integrals have particularly nice geometric properties and respect a dual conformal symmetry. In four dimensions, we leverage this geometric connection to give a concise dilogarithmic expression for the all-mass box in terms of the Murakami-Yano formula. In five dimensions, we use a generalized Gauss-Bonnet theorem to derive a similar dilogarithmic expression for the all-mass pentagon. We also use the Schl\"afli formula to write down the symbol of these integrals for all nn. Finally, we discuss how the geometry behind these formulas depends on space-time signature, and we gather together many results related to these integrals from the mathematics and physics literature.Comment: 49 pages, 8 figure

    Lipopolysaccharide and Tumor Necrosis Factor Regulate Parkin Expression via Nuclear Factor-Kappa B

    Get PDF
    Inflammation and oxidative stress have been implicated in the pathophysiology of Parkinson's disease (PD) and inhibition of microglial activation attenuates degeneration of dopaminergic (DA) neurons in animal models of PD. Loss-of-function mutations in the parkin gene, which encodes an E3 ubiquitin ligase, cause autosomal recessive parkinsonism. While most studies on Parkin have focused on its function in neurons, here we demonstrate that Parkin mRNA and protein is detectable in brain-resident microglia and peripheral macrophages. Using pharmacologic and genetic approaches, we found that Parkin levels are regulated by inflammatory signaling. Specifically, exposure to LPS or Tumor Necrosis Factor (TNF) induced a transient and dose-dependent decrease in Parkin mRNA and protein in microglia, macrophages and neuronal cells blockable by inhibitors of Nuclear Factor-Kappa B (NF-κB) signaling and not observed in MyD88-null cells. Moreover, using luciferase reporter assays, we identified an NF-κB response element in the mouse parkin promoter responsible for mediating the transcriptional repression, which was abrogated when the consensus sequence was mutated. Functionally, activated macrophages from Parkin-null mice displayed increased levels of TNF, IL-1β, and iNOS mRNA compared to wild type macrophages but no difference in levels of Nrf2, HO-1, or NQO1. One implication of our findings is that chronic inflammatory conditions may reduce Parkin levels and phenocopy parkin loss-of-function mutations, thereby increasing the vulnerability for degeneration of the nigrostriatal pathway and development of PD

    Whole Genome Deep Sequencing of HIV-1 Reveals the Impact of Early Minor Variants Upon Immune Recognition During Acute Infection

    Get PDF
    Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained regions of the virus in order to ensure the maintenance of immunodominant CD8 responses and the sustained decline of early viremia

    Endemic Dengue Associated with the Co-Circulation of Multiple Viral Lineages and Localized Density-Dependent Transmission

    Get PDF
    Dengue is one of the most important infectious diseases of humans and has spread throughout much of the tropical and subtropical world. Despite this widespread dispersal, the determinants of dengue transmission in endemic populations are not well understood, although essential for virus control. To address this issue we performed a phylogeographic analysis of 751 complete genome sequences of dengue 1 virus (DENV-1) sampled from both rural (Dong Thap) and urban (Ho Chi Minh City) populations in southern Viet Nam during the period 2003–2008. We show that DENV-1 in Viet Nam exhibits strong spatial clustering, with likely importation from Cambodia on multiple occasions. Notably, multiple lineages of DENV-1 co-circulated in Ho Chi Minh City. That these lineages emerged at approximately the same time and dispersed over similar spatial regions suggests that they are of broadly equivalent fitness. We also observed an important relationship between the density of the human host population and the dispersion rate of dengue, such that DENV-1 tends to move from urban to rural populations, and that densely populated regions within Ho Chi Minh City act as major transmission foci. Despite these fluid dynamics, the dispersion rates of DENV-1 are relatively low, particularly in Ho Chi Minh City where the virus moves less than an average of 20 km/year. These low rates suggest a major role for mosquito-mediated dispersal, such that DENV-1 does not need to move great distances to infect a new host when there are abundant susceptibles, and imply that control measures should be directed toward the most densely populated urban environments

    Genomic insights into the origin of farming in the ancient Near East

    Get PDF
    We report genome-wide ancient DNA from 44 ancient Near Easterners ranging in time between ~12,000 and 1,400 BC, from Natufian hunter–gatherers to Bronze Age farmers. We show that the earliest populations of the Near East derived around half their ancestry from a ‘Basal Eurasian’ lineage that had little if any Neanderthal admixture and that separated from other non-African lineages before their separation from each other. The first farmers of the southern Levant (Israel and Jordan) and Zagros Mountains (Iran) were strongly genetically differentiated, and each descended from local hunter–gatherers. By the time of the Bronze Age, these two populations and Anatolian-related farmers had mixed with each other and with the hunter–gatherers of Europe to greatly reduce genetic differentiation. The impact of the Near Eastern farmers extended beyond the Near East: farmers related to those of Anatolia spread westward into Europe; farmers related to those of the Levant spread southward into East Africa; farmers related to those of Iran spread northward into the Eurasian steppe; and people related to both the early farmers of Iran and to the pastoralists of the Eurasian steppe spread eastward into South Asia
    corecore