845 research outputs found

    Integrated miRNA-/mRNA-Seq of the Habenulo-Interpeduncular Circuit During Acute Nicotine Withdrawal

    Get PDF
    Tobacco use is the leading preventable cause of mortality in the world. The limited number of smoking cessation aids currently available are minimally effective, highlighting the need for novel therapeutic interventions. We describe a genome-wide approach to identify potential candidates for such interventions. Next-generation sequencing was performed using RNA isolated from the habenulo-interpeduncular circuit of male mice withdrawn from chronic nicotine treatment. This circuit plays a central role in the nicotine withdrawal response. Differentially expressed miRNAs and mRNAs were validated using RT-qPCR. Many of the differentially expressed mRNAs are predicted targets of reciprocally expressed miRNAs. We illustrate the utility of the dataset by demonstrating that knockdown in the interpeduncular nucleus of a differentially expressed mRNA, that encoding profilin 2, is sufficient to induce anxiety-related behavior. Importantly, profilin 2 knockdown in the ventral tegmental area did not affect anxiety behavior. Our data reveal wide-spread changes in gene expression within the habenulo-interpeduncular circuit during nicotine withdrawal. This dataset should prove to be a valuable resource leading to the identification of substrates for the design of innovative smoking cessation aids

    Web-based patient-reported outcome measures for personalized treatment and care (PROMPT-Care) : multicenter pragmatic nonrandomized trial

    Get PDF
    Background: Despite the acceptability and efficacy of e–patient-reported outcome (ePRO) systems, implementation in routine clinical care remains challenging. Objective: This pragmatic trial implemented the PROMPT-Care (Patient Reported Outcome Measures for Personalized Treatment and Care) web-based system into existing clinical workflows and evaluated its effectiveness among a diverse population of patients with cancer. Methods: Adult patients with solid tumors receiving active treatment or follow-up care in four cancer centers were enrolled. The PROMPT-Care intervention supported patient management through (1) monthly off-site electronic PRO physical symptom and psychosocial well-being assessments, (2) automated electronic clinical alerts notifying the care team of unresolved clinical issues following two consecutive assessments, and (3) tailored online patient self-management resources. Propensity score matching was used to match controls with intervention patients in a 4:1 ratio for patient age, sex, and treatment status. The primary outcome was a reduction in emergency department presentations. Secondary outcomes were time spent on chemotherapy and the number of allied health service referrals. Results: From April 2016 to October 2018, 328 patients from four public hospitals received the intervention. Matched controls (n=1312) comprised the general population of patients with cancer, seen at the participating hospitals during the study period. Emergency department visits were significantly reduced by 33% (P=.02) among patients receiving the intervention compared with patients in the matched controls. No significant associations were found in allied health referrals or time to end of chemotherapy. At baseline, the most common patient reported outcomes (above-threshold) were fatigue (39%), tiredness (38.4%), worry (32.9%), general wellbeing (32.9%), and sleep (24.1%), aligning with the most frequently accessed self-management domain pages of physical well-being (36%) and emotional well-being (23%). The majority of clinical feedback reports were reviewed by nursing staff (729/893, 82%), largely in response to the automated clinical alerts (n=877). Conclusions: Algorithm-supported web-based systems utilizing patient reported outcomes in clinical practice reduced emergency department presentations among a diverse population of patients with cancer. This study also highlighted the importance of (1) automated triggers for reviewing above-threshold results in patient reports, rather than passive manual review of patient records; (2) the instrumental role nurses play in managing alerts; and (3) providing patients with resources to support guided self-management, where appropriate. Together, these factors will inform the integration of web-based PRO systems into future models of routine cancer care

    MUSE-ALMA Haloes IX: Morphologies and Stellar Properties of Gas-rich Galaxies

    Full text link
    Understanding how galaxies interact with the circumgalactic medium (CGM) requires determining how galaxies morphological and stellar properties correlate with their CGM properties. We report an analysis of 66 well-imaged galaxies detected in HST and VLT MUSE observations and determined to be within ±\pm500 km s1^{-1} of the redshifts of strong intervening quasar absorbers at 0.2z1.40.2 \lesssim z \lesssim 1.4 with H I column densities NHIN_{\rm H I} >> 101810^{18} cm2\rm cm^{-2}. We present the geometrical properties (S\'ersic indices, effective radii, axis ratios, and position angles) of these galaxies determined using GALFIT. Using these properties along with star formation rates (SFRs, estimated using the Hα\alpha or [O II] luminosity) and stellar masses (MM_{*} estimated from spectral energy distribution fits), we examine correlations among various stellar and CGM properties. Our main findings are as follows: (1) SFR correlates well with MM_{*}, and most absorption-selected galaxies are consistent with the star formation main sequence (SFMS) of the global population. (2) More massive absorber counterparts are more centrally concentrated and are larger in size. (3) Galaxy sizes and normalized impact parameters correlate negatively with NHIN_{\rm H I}, consistent with higher NHIN_{\rm H I} absorption arising in smaller galaxies, and closer to galaxy centers. (4) Absorption and emission metallicities correlate with MM_{*} and sSFR, implying metal-poor absorbers arise in galaxies with low past star formation and faster current gas consumption rates. (5) SFR surface densities of absorption-selected galaxies are higher than predicted by the Kennicutt-Schmidt relation for local galaxies, suggesting a higher star formation efficiency in the absorption-selected galaxies.Comment: Accepted for publication in MNRAS, 25 pages, 19 figure

    MUSE-ALMA Halos XI: Gas flows in the circumgalactic medium

    Full text link
    The flow of gas into and out of galaxies leaves traces in the circumgalactic medium which can then be studied using absorption lines towards background quasars. We analyse 27 log(N_HI) > 18.0 HI absorbers at z = 0.2 to 1.4 from the MUSE-ALMA Halos survey with at least one galaxy counterpart within a line of sight velocity of +/-500 km s^{-1}. We perform 3D kinematic forward modelling of these associated galaxies to examine the flow of dense, neutral gas in the circumgalactic medium. From the VLT/MUSE, HST broadband imaging and VLT/UVES and Keck/HIRES high-resolution UV quasar spectroscopy observations, we compare the impact parameters, star-formation rates and stellar masses of the associated galaxies with the absorber properties. We find marginal evidence for a bimodal distribution in azimuthal angles for strong HI absorbers, similar to previous studies of the MgII and OVI absorption lines. There is no clear metallicity dependence on azimuthal angle and we suggest a larger sample of absorbers are required to fully test the relationship predicted by cosmological hydrodynamical simulations. A case-by-case study of the absorbers reveals that ten per cent of absorbers are consistent with gas accretion, up to 30 per cent trace outflows while the remainder trace gas in the galaxy disk, the intragroup medium and low-mass galaxies below the MUSE detection limit. Our results highlight that the baryon cycle directly affects the dense neutral gas required for star-formation and plays a critical role in galaxy evolution.Comment: 13 pages, 6 figures, 12 pages of appendix. Accepted for publication in MNRA

    Fanconi-BRCA pathway mutations in childhood T-cell acute lymphoblastic leukemia

    Get PDF
    BRCA2 (also known as FANCD1) is a core component of the Fanconi pathway and suppresses transformation of immature T-cells in mice. However, the contribution of Fanconi-BRCA pathway deficiency to human T-cell acute lymphoblastic leukemia (T-ALL) remains undefined. We identified point mutations in 9 (23%) of 40 human T-ALL cases analyzed, with variant allele fractions consistent with heterozygous mutations early in tumor evolution. Two of these mutations were present in remission bone marrow specimens, suggesting germline alterations. BRCA2 was the most commonly mutated gene. The identified Fanconi-BRCA mutations encode hypomorphic or null alleles, as evidenced by their inability to fully rescue Fanconi-deficient cells from chromosome breakage, cytotoxicity and/or G2/M arrest upon treatment with DNA cross-linking agents. Disabling the tumor suppressor activity of the Fanconi-BRCA pathway is generally thought to require biallelic gene mutations. However, all mutations identified were monoallelic, and most cases appeared to retain expression of the wild-type allele. Using isogenic T-ALL cells, we found that BRCA2 haploinsufficiency induces selective hypersensitivity to ATR inhibition, in vitro and in vivo. These findings implicate Fanconi-BRCA pathway haploinsufficiency in the molecular pathogenesis of T-ALL, and provide a therapeutic rationale for inhibition of ATR or other druggable effectors of homologous recombination

    Sansanmycin natural product analogues as potent and selective anti-mycobacterials that inhibit lipid I biosynthesis.

    Get PDF
    Tuberculosis (TB) is responsible for enormous global morbidity and mortality, and current treatment regimens rely on the use of drugs that have been in use for more than 40 years. Owing to widespread resistance to these therapies, new drugs are desperately needed to control the TB disease burden. Herein, we describe the rapid synthesis of analogues of the sansanmycin uridylpeptide natural products that represent promising new TB drug leads. The compounds exhibit potent and selective inhibition of Mycobacterium tuberculosis, the etiological agent of TB, both in vitro and intracellularly. The natural product analogues were also shown to be nanomolar inhibitors of Mtb phospho-MurNAc-pentapeptide translocase, the enzyme responsible for the synthesis of lipid I in mycobacteria. This work lays the foundation for the development of uridylpeptide natural product analogues as new TB drug candidates that operate through the inhibition of peptidoglycan biosynthesis
    corecore