480 research outputs found

    Critical temperature of non-interacting Bose gases on disordered lattices

    Full text link
    For a non-interacting Bose gas on a lattice we compute the shift of the critical temperature for condensation when random-bond and onsite disorder are present. We evidence that the shift depends on the space dimensionality D and the filling fraction f. For D -> infinity (infinite-range model), using results from the theory of random matrices, we show that the shift of the critical temperature is negative, depends on f, and vanishes only for large f. The connections with analogous results obtained for the spherical model are discussed. For D=3 we find that, for large f, the critical temperature Tc is enhanced by disorder and that the relative shift does not sensibly depend on f; at variance, for small f, Tc decreases in agreement with the results obtained for a Bose gas in the continuum. We also provide numerical estimates for the shift of the critical temperature due to disorder induced on a non-interacting Bose gas by a bichromatic incommensurate potential.Comment: 18 pages, 8 figures; Fig. 8 improved adding results for another value of q (q=830/1076

    Modeling of the Super-Eddington Phase for Classical Novae: Five IUE Novae

    Full text link
    We present a light curve model for the super-Eddington luminosity phase of five classical novae observed with IUE. Optical and UV light curves are calculated based on the optically thick wind theory with a reduced effective opacity for a porous atmosphere. Fitting a model light curve with the UV 1455 \AA light curve, we determine the white dwarf mass and distance to be (1.3 M_sun, 4.4 kpc) for V693 CrA, (1.05 M_sun, 1.8 kpc) for V1974 Cyg, (0.95 M_sun, 4.1 kpc) for V1668 Cyg, (1.0 M_sun, 2.1 kpc) for V351 Pup, and (1.0 M_sun, 4.3 kpc) for OS And.Comment: 9 pages including 8 figures, to appear in the Astrophysical Journa

    Discovery of the Transiting Planet Kepler-5B

    Get PDF
    We present 44 days of high duty cycle, ultra precise photometry of the 13th magnitude star Kepler-5 (KIC 8191672, T(eff) = 6300 K, log g = 4.1), which exhibits periodic transits with a depth of 0.7%. Detailed modeling of the transit is consistent with a planetary companion with an orbital period of 3.548460 +/- 0.000032 days and a radius of 1.431(-0.052)(+0.041) R(J). Follow-up radial velocity measurements with the Keck HIRES spectrograph on nine separate nights demonstrate that the planet is more than twice as massive as Jupiter with a mass of 2.114(-0.059)(+0.056) M(J) and a mean density of 0.894 +/- 0.079 g cm(-3).NASA's Science Mission DirectorateAstronom

    Comments on the non-conformal gauge theories dual to Ypq manifolds

    Full text link
    We study the infrared behavior of the entire class of Y(p,q) quiver gauge theories. The dimer technology is exploited to discuss the duality cascades and support the general belief about a runaway behavior for the whole family. We argue that a baryonic classically flat direction is pushed to infinity by the appearance of ADS-like terms in the effective superpotential. We also study in some examples the IR regime for the L(a,b,c) class showing that the same situation might be reproduced in this more general case as well.Comment: 48 pages, 27 figures; updated reference

    Un-oriented Quiver Theories for Majorana Neutrons

    Get PDF
    In the context of un-oriented open string theories, we identify quivers whereby a Majorana mass for the neutron is indirectly generated by exotic instantons. We discuss two classes of (Susy) Standard Model like quivers, depending on the embedding of SU(2)_W in the Chan-Paton group. In both cases, the main mechanism involves a vector-like pair mixing through a non-perturbative mass term. We also discuss possible relations between the phenomenology of Neutron-Antineutron oscillations and LHC physics in these models. In particular, a vector-like pair of color-triplet scalars or color-triplet fermions could be directly detected at LHC, compatibly with n-\bar{n} limits. Finally we briefly comment on Pati-Salam extensions of our models.Comment: More comments on phenomenology and fluxes, Re-discussion of SM-quivers compatible with n-cycles conditions Version accepted by JHE

    Identification of Giardia lamblia DHHC Proteins and the Role of Protein S-palmitoylation in the Encystation Process

    Get PDF
    Protein S-palmitoylation, a hydrophobic post-translational modification, is performed by protein acyltransferases that have a common DHHC Cys-rich domain (DHHC proteins), and provides a regulatory switch for protein membrane association. In this work, we analyzed the presence of DHHC proteins in the protozoa parasite Giardia lamblia and the function of the reversible S-palmitoylation of proteins during parasite differentiation into cyst. Two specific events were observed: encysting cells displayed a larger amount of palmitoylated proteins, and parasites treated with palmitoylation inhibitors produced a reduced number of mature cysts. With bioinformatics tools, we found nine DHHC proteins, potential protein acyltransferases, in the Giardia proteome. These proteins displayed a conserved structure when compared to different organisms and are distributed in different monophyletic clades. Although all Giardia DHHC proteins were found to be present in trophozoites and encysting cells, these proteins showed a different intracellular localization in trophozoites and seemed to be differently involved in the encystation process when they were overexpressed. dhhc transgenic parasites showed a different pattern of cyst wall protein expression and yielded different amounts of mature cysts when they were induced to encyst. Our findings disclosed some important issues regarding the role of DHHC proteins and palmitoylation during Giardia encystation.Fil: Merino, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Zamponi, Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Vranych, Cecilia Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Touz, Maria Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Ropolo, Andrea Silvana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentin

    A Universal Decline Law of Classical Novae

    Get PDF
    We calculate many different nova light curves for a variety of white dwarf masses and chemical compositions, with the assumption that free-free emission from optically thin ejecta dominates the continuum flux. We show that all these light curves are homologous and a universal law can be derived by introducing a ``time scaling factor.'' The template light curve for the universal law has a slope of the flux, F \propto t^{-1.75}, in the middle part (from ~2 to ~6 mag below the optical maximum), but it declines more steeply, F \propto t^{-3.5}, in the later part (from ~6 to ~10 mag). This break on the light curve is due to a quick decrease in the wind mass-loss rate. The nova evolutions are approximately scaled by the time of break. Once the time of break is observationally determined, we can derive the various timescales of novae such as the period of a UV burst phase, the duration of optically thick wind phase, and the turnoff date of hydrogen shell-burning. We have applied our template light curve model to the three well-observed novae, V1500 Cyg, V1668 Cyg, and V1974 Cyg. Our theoretical light curves show excellent agreement with the optical y and infrared J, H, K light curves. The WD mass is estimated, from the light curve fitting, to be 1.15 M_\sun for V1500 Cyg, 0.95 ~M_\sun for V1668 Cyg, and 0.95-1.05 M_\sun for V1974 Cyg.Comment: To appear in ApJS, vol.167, 23 pages including 24 figure

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
    corecore