193 research outputs found

    A Framework for the Empirical Investigation of Mindfulness Meditative Development

    Get PDF
    Millions of people globally have learned mindfulness meditation with the goal of improving health and well-being outcomes in both clinical and non-clinical contexts. An estimated half of these practitioners follow mindfulness teachers’ recommendations to continue regular meditation after completion of initial instruction, but it is unclear whether benefits are strengthened by regular practice and whether harm can occur. Increasing evidence shows a wide range of experiences that can arise with regular mindfulness meditation, from profoundly positive to challenging and potentially harmful. Initial research suggests that complex interactions and temporal sequences may explain these experiential phenomena and their relations to health and well-being. We believe further study of the effects of mindfulness meditation is urgently needed to better understand the benefits and challenges of continued practice after initial instructions. Effects may vary systematically over time due to factors such as initial dosage, accumulation of ongoing practice, developing skill of the meditator, and complex interactions with the subjects’ past experiences and present environment. We propose that framing mindfulness meditation experiences and any associated health and well-being benefits within integrated longitudinal models may be more illuminating than treating them as discrete, unrelated events. We call for ontologically agnostic, collaborative, and interdisciplinary research to study the effects of continued mindfulness meditation and their contexts, advancing the view that practical information found within religious and spiritual contemplative traditions can serve to develop initial theories and scientifically falsifiable hypotheses. Such investigation could inform safer and more effective applications of mindfulness meditation training for improving health and well-being

    InAs nanowire hot-electron Josephson transistor

    Full text link
    At a superconductor (S)-normal metal (N) junction pairing correlations can "leak-out" into the N region. This proximity effect [1, 2] modifies the system transport properties and can lead to supercurrent flow in SNS junctions [3]. Recent experimental works showed the potential of semiconductor nanowires (NWs) as building blocks for nanometre-scale devices [4-7], also in combination with superconducting elements [8-12]. Here, we demonstrate an InAs NW Josephson transistor where supercurrent is controlled by hot-quasiparticle injection from normal-metal electrodes. Operational principle is based on the modification of NW electron-energy distribution [13-20] that can yield reduced dissipation and high-switching speed. We shall argue that exploitation of this principle with heterostructured semiconductor NWs opens the way to a host of out-of-equilibrium hybrid-nanodevice concepts [7, 21].Comment: 6 pages, 6 color figure

    eHealth in Geriatric Rehabilitation: An International Survey of the Experiences and Needs of Healthcare Professionals.

    Get PDF
    While eHealth can help improve outcomes for older patients receiving geriatric rehabilitation, the implementation and integration of eHealth is often complex and time-consuming. To use eHealth effectively in geriatric rehabilitation, it is essential to understand the experiences and needs of healthcare professionals. In this international multicentre cross-sectional study, we used a web-based survey to explore the use, benefits, feasibility and usability of eHealth in geriatric rehabilitation settings, together with the needs of working healthcare professionals. Descriptive statistics were used to summarize quantitative findings. The survey was completed by 513 healthcare professionals from 16 countries. Over half had experience with eHealth, although very few (52 of 263 = 20%) integrated eHealth into daily practice. Important barriers to the use or implementation of eHealth included insufficient resources, lack of an organization-wide implementation strategy and lack of knowledge. Professionals felt that eHealth is more complex for patients than for themselves, and also expressed a need for reliable information concerning available eHealth interventions and their applications. While eHealth has clear benefits, important barriers hinder successful implementation and integration into healthcare. Tailored implementation strategies and reliable information on effective eHealth applications are needed to overcome these barriers

    Exploring, exploiting and evolving diversity of aquatic ecosystem models: A community perspective

    Get PDF
    Here, we present a community perspective on how to explore, exploit and evolve the diversity in aquatic ecosystem models. These models play an important role in understanding the functioning of aquatic ecosystems, filling in observation gaps and developing effective strategies for water quality management. In this spirit, numerous models have been developed since the 1970s. We set off to explore model diversity by making an inventory among 42 aquatic ecosystem modellers, by categorizing the resulting set of models and by analysing them for diversity. We then focus on how to exploit model diversity by comparing and combining different aspects of existing models. Finally, we discuss how model diversity came about in the past and could evolve in the future. Throughout our study, we use analogies from biodiversity research to analyse and interpret model diversity. We recommend to make models publicly available through open-source policies, to standardize documentation and technical implementation of models, and to compare models through ensemble modelling and interdisciplinary approaches. We end with our perspective on how the field of aquatic ecosystem modelling might develop in the next 5–10 years. To strive for clarity and to improve readability for non-modellers, we include a glossary

    Mechanistic framework to link root growth models with weather and soil physical properties, including example applications to soybean growth in Brazil

    Get PDF
    Background and aimsRoot elongation is generally limited by a combination of mechanical impedance and water stress in most arable soils. However, dynamic changes of soil penetration resistance with soil water content are rarely included in models for predicting root growth. Better modelling frameworks are needed to understand root growth interactions between plant genotype, soil management, and climate. Aim of paper is to describe a new model of root elongation in relation to soil physical characteristics like penetration resistance, matric potential, and hypoxia.MethodsA new diagrammatic framework is proposed to illustrate the interaction between root elongation, soil management, and climatic conditions. The new model was written in Matlab®, using the root architecture model RootBox and a model that solves the 1D Richards equations for water flux in soil. Inputs: root architectural parameters for Soybean; soil hydraulic properties; root water uptake function in relation to matric flux potential; root elongation rate as a function of soil physical characteristics. Simulation scenarios: (a) compact soil layer at 16 to 20 cm; (b) test against a field experiment in Brazil during contrasting drought and normal rainfall seasons.Results(a) Soil compaction substantially slowed root growth into and below the compact layer. (b) Simulated root length density was very similar to field measurements, which was influenced greatly by drought. The main factor slowing root elongation in the simulations was evaluated using a stress reduction function.ConclusionThe proposed framework offers a way to explore the interaction between soil physical properties, weather and root growth. It may be applied to most root elongation models, and offers the potential to evaluate likely factors limiting root growth in different soils and tillage regimes

    A genome-wide association study of early menopause and the combined impact of identified variants

    Get PDF
    Early menopause (EM) affects up to 10% of the female population, reducing reproductive lifespan considerably. Currently, it constitutes the leading cause of infertility in the western world, affecting mainly those women who postpone their first pregnancy beyond the age of 30 years. The genetic aetiology of EM is largely unknown in the majority of cases. We have undertaken a meta-analysis of genome-wide association studies (GWASs) in 3493 EM cases and 13 598 controls from 10 independent studies. No novel genetic variants were discovered, but the 17 variants previously associated with normal age at natural menopause as a quantitative trait (QT) were also associated with EM and primary ovarian insufficiency (POI). Thus, EM has a genetic aetiology which overlaps variation in normal age at menopause and is at least partly explained by the additive effects of the same polygenic variants. The combined effect of the common variants captured by the single nucleotide polymorphism arrays was estimated to account for ∼30% of the variance in EM. The association between the combined 17 variants and the risk of EM was greater than the best validated non-genetic risk factor, smokin

    The limited storage capacity of gonadal adipose tissue directs the development of metabolic disorders in male C57Bl/6J mice

    Get PDF
    AIMS/HYPOTHESIS: White adipose tissue (WAT) consists of various depots with different adipocyte functionality and immune cell composition. Knowledge of WAT-depot-specific differences in expandability and immune cell influx during the development of obesity is limited, therefore we aimed to characterise different WAT depots during the development of obesity in mice. METHODS: Gonadal WAT (gWAT), subcutaneous WAT (sWAT) and mesenteric WAT (mWAT) were isolated from male C57Bl/6J mice with different body weights (approximately 25–60 g) and analysed. Linear and non-linear regression models were used to describe the extent of WAT depot expandability and immune cell composition as a function of body weight. RESULTS: Whereas mouse sWAT and mWAT continued to expand with body weight, gWAT expanded mainly during the initial phase of body weight gain. The expansion diminished after the mice reached a body weight of around 40 g. From this point on, gWAT crown-like structure formation, liver steatosis and insulin resistance occurred. Mouse WAT depots showed major differences in immune cell composition: gWAT consisted mainly of macrophages, whereas sWAT and mWAT primarily contained lymphocytes. CONCLUSIONS/INTERPRETATION: Marked inter-depot differences exist in WAT immune cell composition and expandability. The limited storage capacity of gWAT seems to direct the development of metabolic disorders in male C57Bl/6J mice. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00125-015-3594-8) contains peer-reviewed but unedited supplementary material, which is available to authorised users

    Measurement of the Tau Lepton Polarisation at LEP2

    Get PDF
    A first measurement of the average polarisation P_tau of tau leptons produced in e+e- annihilation at energies significantly above the Z resonance is presented. The polarisation is determined from the kinematic spectra of tau hadronic decays. The measured value P_tau = -0.164 +/- 0.125 is consistent with the Standard Model prediction for the mean LEP energy of 197 GeV.A first measurement of the average polarisation Pτ of tau leptons produced in e + e − annihilation at energies significantly above the Z resonance is presented. The polarisation is determined from the kinematic spectra of tau hadronic decays. The measured value Pτ=−0.164±0.125 is consistent with the Standard Model prediction for the mean LEP energy of 197 GeV.A first measurement of the average polarisation P_tau of tau leptons produced in e+e- annihilation at energies significantly above the Z resonance is presented. The polarisation is determined from the kinematic spectra of tau hadronic decays. The measured value P_tau = -0.164 +/- 0.125 is consistent with the Standard Model prediction for the mean LEP energy of 197 GeV

    Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity.

    Get PDF
    Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels
    corecore