
ARTICLE

The limited storage capacity of gonadal adipose tissue directs
the development of metabolic disorders in male C57Bl/6J mice

Lianne van Beek1,2
& Jan B. van Klinken1,2

& Amanda C. M. Pronk1,2
&

Andrea D. van Dam2,3
& Eline Dirven1,2

& Patrick C. N. Rensen2,3
&

Frits Koning4 & Ko Willems van Dijk1,2,3
& Vanessa van Harmelen1,2

Received: 21 January 2015 /Accepted: 31 March 2015 /Published online: 12 May 2015
# The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract
Aims/hypothesis White adipose tissue (WAT) consists of var-
ious depots with different adipocyte functionality and immune
cell composition. Knowledge of WAT-depot-specific differ-
ences in expandability and immune cell influx during the de-
velopment of obesity is limited, therefore we aimed to char-
acterise different WAT depots during the development of obe-
sity in mice.
Methods Gonadal WAT (gWAT), subcutaneous WAT (sWAT)
and mesenteric WAT (mWAT) were isolated from male
C57Bl/6J mice with different body weights (approximately
25–60 g) and analysed. Linear and non-linear regression
models were used to describe the extent of WAT depot ex-
pandability and immune cell composition as a function of
body weight.
Results Whereas mouse sWAT and mWAT continued to ex-
pand with body weight, gWAT expanded mainly during the
initial phase of body weight gain. The expansion diminished
after the mice reached a bodyweight of around 40 g. From this

point on, gWATcrown-like structure formation, liver steatosis
and insulin resistance occurred. Mouse WAT depots showed
major differences in immune cell composition: gWAT
consisted mainly of macrophages, whereas sWAT and
mWAT primarily contained lymphocytes.
Conclusions/interpretation Marked inter-depot differences
exist in WAT immune cell composition and expandability.
The limited storage capacity of gWAT seems to direct the
development of metabolic disorders in male C57Bl/6J mice.
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Abbreviations
BAT Brown adipose tissue
CLS Crown-like structures
gWAT Gonadal white adipose tissue
HFD High-fat diet
IR Insulin resistance
mWAT Mesenteric white adipose tissue
SVF Stromal vascular fraction
sWAT Subcutaneous white adipose tissue
TG Triacylglycerol
WAT White adipose tissue

Introduction

White adipose tissue (WAT) is the main energy storage
organ, and is distributed over various depots. The re-
gional distribution and inflammatory status of WAT are
strongly associated with the development of metabolic
disorders. Excessive abdominal fat, or central obesity, is
known to be a strong risk factor for type 2 diabetes
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mellitus and cardiovascular disease [1, 2]. WAT can be
divided into subcutaneous WAT (sWAT) and visceral
WAT (vWAT), located underneath the skin and around
the abdominal organs, respectively. Mouse vWAT is
generally subdivided into mesenteric WAT (mWAT; be-
tween the organs) and gonadal WAT (gWAT; around the
testes). While WAT was originally considered an organ
with homogeneous function, vWAT is now thought to
exert more adverse effects on health compared with
sWAT [2–4]. These pathophysiological differences in
WAT depots are linked to the metabolic and inflamma-
tory status of the tissue.

Due to excessive fat accumulation in WAT during
obesity, adipocytes become stressed and release in-
creased amounts of fatty acids and pro-inflammatory
adipokines and chemokines. These inflammatory signals
induce immune cell infiltration and dysfunction of the
obese WAT [5–7]. Macrophage accumulation, or more
specifically the presence of crown-like structures
(CLS), in the WAT is associated with adipocyte death
caused by cellular lipid overload [8, 9]. Furthermore,
T and B lymphocytes are increased in WAT during obe-
sity and contribute to the development of metabolic dis-
orders [10, 11]. Pro-inflammatory cytokines produced by
both adipocytes and infiltrating immune cells directly
interfere with the insulin signalling pathway, thereby
affecting insulin sensitivity both locally and systemical-
ly, leading to insulin resistance (IR) and type 2 diabetes
[12, 13]. Compared with sWAT, vWAT secretes more
fatty acids and pro-inflammatory cytokines and has a
higher infiltration of cytotoxic T cells and macrophages
during obesity [14–16].

Most of the human studies on WAT inflammation
compare WAT between lean and obese individuals and
consider only one WAT depot. The majority of mouse
studies use male C57Bl/6J mice as a model for obesity
induced by a high-fat diet (HFD) and assess only
gWAT, whereas sWAT and mWAT are neglected [17].
As different WAT depots have different functions and
cellular composition, it is of importance to determine
the functional and immunological phenotypes of the
various WAT depots. Moreover, longitudinal studies fol-
lowing the development of obesity are sparse and, as a
consequence, the inflammatory response of the different
WAT depots during body weight gain has, until now, been
poorly characterised. Therefore, the aim of the current study
was to phenotype the different WAT depots and to determine
regional differences with regard to WAT expandability and
inflammation in male C57Bl/6J mice during the development
of HFD-induced obesity. In addition, we set out to develop a
set of linear and non-linear regression models to describe or-
gan weights and WAT (immune cell) composition as a func-
tion of body weight.

Methods

Animals Experiments were performed with six different
batches of male C57Bl/6J mice (Charles River, Maastricht,
the Netherlands). The batches differed in duration (4–
34weeks) and type of HFD (45% or 60% energy derived from
lard fat; D12451 or D12492, Research Diet Services, Wijk bij
Duurstede, the Netherlands) (electronic supplementary mate-
rial [ESM] Table 1). Body weight was measured and lean and
fat mass was assessed byMRI-based body composition analy-
sis (Echo MRI, Echo Medical Systems, Houston, TX, USA).
At the end of the diet intervention, mice were killed, perfused
and organs were dissected for further analysis. All experi-
ments were approved by the animal ethics committee of
Leiden University Medical Center.

Adipocyte and stromal vascular cell isolation Depots of
gWAT (one side), sWAT (posterior, one side) and mWATwere
dissected from the mice and kept in PBS after the diet inter-
vention. Tissues were processed for adipocyte size determina-
tion as previously described [18]. Adipocyte number per fat
pad was calculated from the fat pad mass and adipocyte size.
The residue of the WAT filtrate was used for the isolation of
stromal vascular fraction (SVF) to analyse immune cell com-
position using flow cytometry. After centrifugation (350g,
10 min) the supernatant fraction was discarded and the pellet
was treated with erythrocyte lysis buffer, after which the cells
were counted using an automated cell counter (TC10, Bio-
Rad, Berkeley, CA, USA). The SVF was fixed using 0.5%
(vol./vol.) paraformaldehyde, stored in FACS buffer (PBS,
0.02% (vol./vol.) sodium azide, 0.5% (vol./vol.) FCS) in the
dark at 4°C and analysed within 1 week.

Additional analyses Plasma, liver triacylglycerol (TG),
adipocyte lipolysis, histology and flow cytometry analysis
were performed as described in ESM Methods.

Statistics Data are presented as single data points or mean±
SD. Statistical differences between groups were calculated
with the Student’s t test using GraphPad Prism version 6
(GraphPad software, San Diego, CA, USA). Correlation
analyses were performed by making correlation plots of body
weight vs the variables measured in this study. We modelled
the association between each variable and body weight using
regression assuming either a linear (y=b×x+c; a=1) or non-
linear power function. The non-linear power functions could
either have y-intercept (y=b×xa+c; a>1, exponential form),
or x-intercept (y=b×(x−c)a; a<1, curve tapering off); x=body
weight, y=lean, fat or individual organ mass. For each analy-
sis the p value zero slope (p) indicated if the slope was signif-
icantly different from 0 (b=0, horizontal line). In addition,
superiority of the non-linear (power) function over the linear
model was determined by testing the hypothesis a=1 using
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the extra sum-of-squares F test; the corresponding p value was
termed p value linear indicated by plin. A Spearman rank cor-
relation coefficient (r) was determined for every association.
A value of p<0.05 was considered statistically significant,
p values were corrected by Bonferroni multiple test correction
when indicated; significant values in the tables are identified
by *p<0.05, **p<0.01, ***p<0.001.

Results

HFD-induced changes in body composition and organ
weight In order to study mice with a broad range of body
weights, ranging from lean to severely obese (26.3–59.3 g,
n=54), C57Bl/6J mice were subjected to different diet inter-
ventions for a different number of weeks and with a varying
fat percentage in the diet. Lean mice (<30 g) consisted of
about 80% lean mass and 20% fat mass. Mice exposed to
HFD increased both lean and fat mass, though fat mass in-
creased relatively more (Fig. 1a, b; ESM Table 2). Obese mice
consisted of up to 50% fat mass. Figure 1c shows that the liver
weight increased non-linearly with a power >1 when

correlated with body weight, with a substantially increased
liver weight from approximately 40 g upwards. This was
mainly caused by an increase of fat in the liver (ESM
Fig. 1a). Also, heart weight had a non-linear correlation with
body weight (Fig. 1d). Spleen weight correlated linearly with
body weight (Fig. 1e), as did brown adipose tissue (BAT),
which showed a very strong linear positive correlation with
body weight (Fig. 1f). BAT lipid droplet content correlated
positively both with body weight (ESM Fig. 1b) and BAT
weight (r=0.64, p=0.0001, data not shown).

ESM Table 2 shows the equations of the curves of the
correlations between the individual organs and body weight
after best-fit comparison statistics. Plasma glucose and insulin
as well as plasma lipid levels were measured and correlated
with body weight. Glucose increased at the start of body
weight gain, after which it tapered off (Fig. 2a). As glucose
levels are regulated by insulin, the flattening of the glucose
curve can be linked to increasing insulin levels (Fig. 2b).
Plasma total cholesterol correlated positively with body
weight (r=0.72, p<0.0001), whereas other plasma lipids
(TG and NEFA) did not correlate with body weight (data not
shown).
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Fig. 1 Correlation of HFD-
induced changes in body
composition and organ weight
with body weight. Correlations
with body weight in male C57Bl/
6J mice (ranging from
approximately 25 to 60 g) are
shown for lean mass (a), fat mass
(b), and different organ weights:
liver (c), heart (d), spleen (e) and
interscapular BAT (f).
Associations were modelled
using either a linear model or non-
linear function, 95% CIs are
shown as grey bands. See ESM
Table 2 for equations, correlations
and p values
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Expandability of mouse WAT depots Fat pad weight of the
various WAT depots reflects expandability during HFD expo-
sure. The gWAT depot expanded mostly during the initial
phase of weight gain compared with both sWAT and mWAT.
With progressing weight gain, the gWAT growth curve ta-
pered off, whereas sWAT and mWAT continued to grow with
increasing body weight (Fig. 3a, c, e; ESM Table 2). This is
also illustrated by ESM Fig. 2, which shows the results when
mice were divided into groups based on body weight to de-
termine the adipocyte size distribution. Whereas for both
sWATand mWAT the adipocyte size distribution curve shifted
towards larger adipocytes with higher body weight, gWAT

adipocytes remained comparable in size from approximately
40 g onwards. Interestingly, the gonadal adipocytes were larg-
er compared with adipocytes of sWAT and mWAT for both
lean and obese mice (Fig. 3b, d, f; ESM Table 3, 4). The
potency of insulin to inhibit lipolysis in gonadal adipocytes
was tested ex vivo and revealed a negative correlation with
body weight (Fig. 4a), as well as with adipocyte size
(r=−0.42, p=0.0043, data not shown).

WAT growth is accomplished by hypertrophy (increase in
size) or hyperplasia (increase in number) of the adipocytes.
For all three WAT depots, there was a significant correlation
between body weight and adipocyte size (Fig. 3b, d, f;
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Fig. 2 Correlation of HFD-induced changes in plasma glucose and in-
sulin levels with body weight. The correlation between body weight and
plasma glucose (a, r=0.67, p<0.0001, p lin=0.0044) and insulin (b,
r=0.93, p<0.0001, p lin<0.0001) levels in male C57Bl/6J mice.

Associations were modelled using either a linear model or non-linear
function; 95% CIs are shown as grey bands. A significant p value pro-
vides evidence of a non-zero slope in the linear model; a significant
p lin value provides evidence that the association is non-linear
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Fig. 3 Correlation of HFD-
induced changes in fat pad weight
and adipocyte size with body
weight. Fat pad weight (a, c, e)
and adipocyte size (b, d, f) of
gWAT, sWAT and mWAT in
relation to body weight in male
C57Bl/6J mice. For gWAT and
sWAT, one fat pad is
representative. Associations were
modelled using either a linear
model or non-linear function;
95%CIs are shown as grey bands.
See Table 1 and ESM Table 2 for
equations, correlations and
p values
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Table 1), whereas adipocyte number did not correlate with
body weight (Table 1). However, when correlated with WAT
depot weight, adipocyte number did show a slight positive
correlation for gWATandmWAT (data not shown). These data
indicate that WAT expansion occurred predominantly by adi-
pocyte hypertrophy and somewhat by hyperplasia in gWAT
and mWAT, whereas sWAT expanded only by adipocyte
hypertrophy.

HFD-induced changes in immune cell composition in
mouse WAT depots WAT depots were processed to isolate
the SVF, which contains immune cells as well as pre-
adipocytes and endothelial cells. The absolute SVF cell num-
ber was determined and represented per fat pad. The SVF cell
count of gWATcorrelated positively with bodyweight, where-
as the SVF cell counts of sWAT and mWAT did not correlate
with body weight (Table 1). Absolute leucocyte numbers
(CD45+ cells) per fat pad showed a linear correlation with
body weight for both gWAT and sWAT, whereas leucocyte
numbers in mWAT showed no correlation with body
weight (ESM Figs 3a, 4a, 5a). Absolute T cell numbers
in gWAT and sWAT, but not mWAT, correlated positive-
ly with body weight (ESM Figs 3b, 4b, 5b). Within the
T cell population, the ratio between T helper cells and
cytotoxic T cells (CD4+ and CD8+ cells, respectively)
was determined. In both gWAT and sWAT the

CD4:CD8 ratio showed a negative correlation with
bodyweight, which indicates a larger relative increase
in cytotoxic T cells compared with T helper cells
(Table 1). Absolute B cell numbers (CD19+ cells)
showed a positive correlation with body weight for
gWAT (ESM Fig. 3d).

Absolute macrophage numbers (F4/80+ cells) of all three
WAT depots correlated positively with body weight (ESM
Figs 3c, 4c, 5c). Interestingly, absolute macrophage numbers
in gWAT and sWAT showed a non-linear correlation with
body weight with a power >1, while the correlation in
mWAT was linear. WAT macrophages can form CLS, which
is shown in Fig. 4b by F4/80 staining of gWAT. CLS increased
non-linearly with increasing body weight with a power >1 in
the gWAT depot (Fig. 4c). Within the F4/80+ cell population,
M1 and M2 macrophages were distinguished using CD11B
and CD11C markers (M1, CD11B+CD11C+; M2,
CD11B+CD11C−). Figure 4d shows the correlation of M1
and M2 macrophages as percentages of F4/80 cells from the
gWAT depot (representative for the other two depots, data not
shown) with body weight. Within all adipose tissue depots,
M1 macrophages were positively correlated and M2 macro-
phages were negatively correlated with body weight. The
M1:M2 ratio also showed a strong positive correlation with
body weight within all WAT depots (Table 1). This indicates
relatively more M1 macrophages in WATwith a higher body
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Fig. 4 Correlation of insulin responsiveness of adipocytes and macro-
phage phenotype in gWAT with body weight. Percentage inhibition of
lipolysis by insulin of gonadal adipocytes correlated with body weight (a,
r=−0.47, p=0.0010). Insulin responsiveness of the adipocytes was deter-
mined by measuring the response of the adipocytes to 8-bromo-cAMP-
stimulated lipolysis and the percentage inhibition thereof by insulin. F4/
80-stained macrophages in gWAT (b), a ×20 magnification is used, CLS
are indicated by arrows. CLS counts/mm2 WAT correlated with body
weight of male C57Bl/6J mice (c, r=0.71, p<0.0001, p lin<0.0001).

Macrophage type 1 (CD11B+CD11C+; black circles; r=0.77,
p<0.0001) and 2 (CD11B+CD11C−; grey squares; r=−0.76, p<0.0001)
as percentage of F4/80+ cells in SVF of gWAT by flow cytometry (d)
correlated with body weight of male C57Bl/6J mice. Associations were
modelled using either a linear or non-linear function; 95% CIs are shown
as grey bands. A significant value of p provides evidence of a non-zero
slope in the linear model; a significant value of p lin provides evidence that
the association is non-linear

Diabetologia (2015) 58:1601–1609 1605



Table 1 WAT depot composition correlated with body weight of mice on an HFD

Variable Correlation with body weight Statistics

a b c r p valuea

Zero slope
p valuea

Linear

gWAT

Adipocyte size
(μm; n=54)

0.1482 78.63 25.46 0.8112 1.40×10−19*** 2.92×10−07***

Adipocyte no./fat pad
(n=46)

0.1822 1.000 –

SVF no.b/fat pad
(n=54)

1 40,829 −672,214 0.6768 1.20×10−05*** 1.000

Leucocytes
(% CD45 of SVF; n=44)

1 0.5060 42.98 0.4131 0.1197 –

T lymphocytes
(% CD3 of SVF; n=44)

1 0.2878 0.1631 0.3518 0.0315* 1.000

T lymphocyte ratio
(CD4:CD8; n=51)

1 −0.1689 10.71 −0.6287 7.28×10−05*** 0.8226

B lymphocytes
(% CD19 of SVF; n=35)

1 0.1398 −1.206 0.3631 0.0963 –

Macrophages
(% F4/80 of SVF; n=50)

−0.1962 1.000 –

Macrophage ratio
(M1:M2; n=45)

1 0.01534 −0.3574 0.7710 7.92×10−08*** 1.000

sWAT

Adipocyte size
(μm; n=54)

0.2473 49.44 24.39 0.8886 3.26×10−20*** 4.33×10−04***

Adipocyte no./fat pad
(n=46)

−0.03627 1.000 –

SVF no.a/fat pad
(n=54)

0.2907 1.000 –

Leucocytes
(% CD45 of SVF; n=50)

1 0.6146 32.41 0.4680 0.0036** 1.000

T lymphocytes
(% CD3 of SVF; n=40)

0.1068 1.000 –

T lymphocyte ratio
(CD4:CD8; n=50)

1 −0.03013 2.784 −0.4064 0.1818 –

B lymphocytes
(% CD19 of SVF; n=43)

−0.07501 1.000 –

Macrophages
(% F4/80 of SVF; n=29)

−0.1822 1.000 –

Macrophage ratio
(M1:M2; n=34)

1 0.01025 −0.2255 0.6262 1.95×10−06*** 0.5508

mWAT

Adipocyte size
(μm; n=54)

0.3524 34.09 22.17 0.9528 3.17×10−29*** 3.23×10−04***

Adipocyte no./fat pad
(n=46)

−0.06658 1.000 –

SVF no.a/fat pad
(n=54)

0.1914 1.000 –

Leucocytes
(% CD45 of SVF; n=49)

1 −0.6190 97.37 −0.3613 0.0729 –

T lymphocytes
(% CD3 of SVF; n=48)

1 −0.7400 54.93 −0.6355 7.07×10−06*** 0.5445

T lymphocyte ratio
(CD4:CD8; n=48)

0.06193 1.000 –

B lymphocytes
(% CD19 of SVF; n=30)

1 −0.9100 72.53 −0.3696 0.0261 –

Macrophages
(% F4/80 of SVF; n=23)

1 0.9423 −22.89 0.5198 0.0153* 0.1161

Macrophage ratio
(M1:M2; n=29)

1 0.01035 −0.2701 0.6768 6.93×10−04*** 0.2763

a p value after Bonferroni multiple test correction; *p<0.05, **p<0.01, ***p<0.001
bAbsolute number of cells in the SVF

No. number
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weight. Thus, HFD induces immune cell compositional
changes in all three WAT depots, with an increase in immune
cell numbers mainly in gWAT and sWAT.

Immune cell composition of distinct WAT depots from
lean and obese mice The gWAT, sWAT and mWAT depots
from either lean or obese mice (mean bodyweight 31.0±2.9 g,
n=10 and 50.1±3.6 g, n=8, respectively) were analysed and
compared with each other to determine differences in immune
cell composition between the adipose tissue regions. In lean
mice, approximately 60% of the SVF from gWAT and sWAT
consisted of leucocytes (57.5±9.9% and 62.7±6.2%, respec-
tively), and in mWAT this percentage was even higher (78.3±
12.1%) (ESM Table 3). In obese mice, there were no differ-
ences in leucocyte percentage in the SVF between the differ-
ent WAT depots (approximately 65%, ESM Table 4). T cells
were present in all three WAT depots. Interestingly, in mWAT
from lean mice the percentage of T cells in the SVF was
significantly higher compared with gWAT and sWAT (ESM
Table 3). The CD4:CD8 ratio in lean sWAT and mWAT was
between 1 and 2, which indicates slightly more CD4 cells than
CD8 cells. However, lean gWAT contained even more CD4
than CD8 cells as the ratio was around 5 (ESM Table 3). In
obese mice, there were no differences in T cell percentages
between the WAT depots (ESM Table 4). There were major
differences in B cell content between the depots, ranging from
hardly any B cells in gWAT to approximately 35% of the SVF
in mWAT of lean mice and approximately 20% of the SVF in
mWAT of obese mice (ESM Tables 3 and 4). The gWAT
predominantly contained macrophages (approximately 30%
of SVF both in lean and obese mice), while less than 10% of
the SVF from sWAT consisted of macrophages in both lean
and obese mice. These data indicate that there are large differ-
ences in immune cell composition between different WAT
depots from both lean and obese mice.

Discussion

In the current study we determined intra-depot differences in
WAT immune cell composition in relation toWATexpandabil-
ity. Mouse WAT depots showed major differences in expand-
ability and immune cell infiltration during the development of
obesity. Furthermore, a body weight of approximately 40 g
emerged as a critical tipping point from whereon metabolic
dysfunction occurred, at least in male C57Bl/6J mice.

It has been extensively shown that distinct WAT depots
from both mice and humans have different metabolic func-
tions. This is due to intrinsic differences in adipocyte charac-
teristics but has also been attributed to differences in immune
cell composition in the various depots [19–21]. Here, we have
performed a direct comparison of the different WAT depots in
male C57Bl/6J mice and focussed simultaneously on the

expandability and immune cell composition during the devel-
opment of obesity, which has until now been poorly
characterised. Our data confirm great variability in immune
cell composition between WAT depots. The characteristics of
the different mouse WAT depots already differed in the lean
state, and each depot responded differently to body weight
gain with respect to immune cell composition as well as ex-
pandability. Mouse gWAT expanded mostly during the initial
phase of body weight gain, and increased less after a body
weight of around 40 g. Although sWAT and mWAT did not
primarily expand as fast as gWAT, they both kept expanding
with body weight after 40 g. This implies that gWAT is the
primary storage depot that grows initially in HFD-induced
obesity, followed by sWAT and mWAT. This is also reflected
by the larger gWAT adipocytes seen during both the lean and
obese states, and which have also been identified by
Sackmann-Sala et al, albeit only in lean mice [22].

At around a body weight of 40 g, at which point the gWAT
growth curve tapered off, the liver started to grow significant-
ly, mainly caused by an increase in fat content. Apparently, the
gWATadipocytes were saturated and could not grow any larg-
er to store additional fat. As a consequence, the excess fat that
could not be stored in the gWAT depot was stored ectopically
in the liver [23]. Moreover, around this point of body weight
gain, the number of CLS started to increase in the gWAT. As
CLS are found around stressed and dying adipocytes [9], the
increase in numbers of CLS around 40 g body weight appear
to be associated with increased adipocyte death. Also, insulin
levels increased substantially from this point on, indicat-
ing the development of insulin resistance. Our data
therefore imply that approximately 40 g body weight
is an important tipping point in male C57Bl/6J mice
from whereon WAT and systemic metabolic dysfunction
occur concomitantly. In this study, data have been ex-
clusively obtained from male C57Bl/6J mice in combi-
nation with HFD to induce obesity. Whether females,
other mouse strains/models or humans also have such a
threshold BMI at which WAT inflammation and meta-
bolic dysfunction rapidly increase remains to be
investigated.

Our data are in agreement with the study of Strissel et al,
which also showed that at a certain body weight in mice
gWAT stops expanding because of increased adipocyte death,
whereas liver starts accumulating fat [24]. Strikingly, while
our data showed a constant gWAT weight and continuous
increase in CLS, they showed a reduction in both gWAT
weight and CLS formation after reaching a body weight of
40 g. This was accompanied by a reduction in adipocyte size
and increased adipocyte numbers, which they attributed to
newly differentiated adipocytes. One explanation for their
findings might be that they fed their mice a 60% HFD for
20 weeks, which may be a more extreme intervention than
those used in our study. There are several other studies
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elucidating regional differences in WAT growth [25–27], al-
though these studies do not extensively link WATexpandabil-
ity to immune cell infiltration and metabolic characterisation.
This study is the first that focusses on all these processes
simultaneously.

The size of adipocytes increased in all three WAT
depots during body weight gain. Adipocyte number per
fat pad remained comparable in all depots when corre-
lated with body weight, whereas in gWAT and mWAT
adipocyte numbers increased slightly during the HFD
intervention when correlated with fat pad weight. Our
observations are in line with previous mouse studies
that showed expansion by hypertrophy only in sWAT,
whereas mWAT expanded by both hypertrophy and hy-
perplasia [25, 27]. Adipocytes in gWAT were larger than
those in sWAT and mWAT in mice. Large adipocytes
are thought to release more pro-inflammatory cytokines
and chemokines that attract circulating monocytes into
the WAT which, in turn, differentiate into macrophages [5,
28]. Indeed, the SVF of the gWAT contained a higher fraction
of macrophages compared with sWAT and mWAT. Also, the
absolute number of macrophages per WAT depot was higher
in the gWAT than in the other WAT depots.

The absolute leucocyte numbers in mouse mWAT were
much higher compared with sWAT and gWAT. The mWAT
surrounds the intestine, which represents the first line of de-
fence against intestinal pathogens and could therefore explain
the large number of leucocytes. However, mWAT is also
known to contain a large amount of lymphoid tissue including
lymph nodes and milky spots [29]. Although we took great
care to remove all visible lymph nodes from the mWAT before
the immune cell characterisation, we cannot exclude the pos-
sibility that we missed some lymph nodes. As lymph nodes
contain numerous leucocytes, this could also explain the high
number of leucocytes present in mouse mWAT. Another issue
affecting analyses of WAT inflammation might be contamina-
tion of the SVF with immune cells from the circulation.
However, our mice were perfused before removal of the
WAT depots.

Numerous pathophysiological processes are known to be
associated with the development of IR. In this study, we fo-
cussed on WAT expendability and inflammation as a measure
for WAT dysfunction. However, inadequate angiogenesis and
related hypoxia are known as early determinants for WAT
dysfunction as well [30, 31], and can induce WAT fibrosis,
which has also been associated with IR [32]. Although beyond
the scope of the current study, it is interesting to determine the
association between these pathologies, WAT expansion and
inflammation. Macrophages are highly abundant in WAT
with, specifically, M1 macrophages accumulating during obe-
sity and contributing to IR. Our data showed a phenotypic
switch from M2 to M1 type macrophages during obesity,
which has previously also been shown by Lumeng et al

[17]. The number of CLS, which are primarily formed by
M1 macrophages, also increased with body weight [33]. M1
macrophages are known to accumulate lipids and form foam
cells. Lipid accumulation in macrophages has previously been
directly related to the expansion of WAT [34]. Whether lipid-
loaded macrophages are a consequence of the limited expan-
sion of WAT remains to be investigated.

BAT is known to be a prominent player in body weight
control, as it burns TG to produce heat [35, 36]. Here, we
show that BATweight is strongly correlatedwith bodyweight.
In general, high BATweight is associated with inactive BAT,
as TG is being stored instead of being used for heat production
[37]. This is supported by an increased lipid droplet content in
BAT with higher body weight. Our observed correlation
between BAT weight and body weight can be explained by
the thermal insulation function ofWAT. The increasedWAT in
obesity is enough to keep the animal warm and heat produc-
tion by BAT activity is reduced. Thus, body weight is an
important confounder when studying BAT activity.

We conclude that mouse WAT depots vary considerably in
expandability and immune cell composition during HFD-
induced body weight gain. With a body weight threshold of
approximately 40 g in mice, gWAT seems to have reached its
maximum expansion capacity and at this point WAT dysfunc-
tion and concomitant systemic metabolic dysfunction will
commence.
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