18 research outputs found

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemésio 2007; Donegan 2008, 2009; Nemésio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART): Study protocol for a randomized controlled trial

    Get PDF
    Background: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). Methods/Design: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH(2)O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure <= 30 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. Discussion: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration method.Hospital do Coracao (HCor) as part of the Program 'Hospitais de Excelencia a Servico do SUS (PROADI-SUS)'Brazilian Ministry of Healt

    Miniaturized implantable cardiac monitor with a long sensing vector (BIOMONITOR III): Insertion procedure assessment, sensing performance, and home monitoring transmission success

    No full text
    Background: Implantable Cardiac Monitors (ICMs) are used for long-term monitoring of arrhythmias. BIOMONITOR III is a novel ICM with a miniaturized profile, long sensing vector due to a flexible antenna, simplified implantation with a dedicated insertion tool for pocket formation and ICM placement in a single step, and daily automatic Home Monitoring (HM) function. Methods: In 47 patients undergoing BIOMONITOR III insertion for any ICM indication, 16 investigators at 10 Australian sites assessed handling characteristics of the insertion tool, R-wave amplitudes, noise burden, Pwave visibility, and HM transmission success. Patients were followed for 1 month. Results: All 47 attempted insertions were successful. Median time from skin incision to removal of the insertion tool after ICM insertion was 39 s (IQR 19–65) and to wound closure and cleaning was 4.7 min (IQR 3.5–7.8). All aspects of the insertion tool were rated as “good” or “excellent” in ≥97.9% and “fair” in ≤2.1% of patients, except for “force needed for tunnelling” (91.5% good/excellent, 8.5% fair). Based on HM data, R-waves in the first month were stable at 0.70 ± 0.37 mV. Median noise burden (disabling automatic rhythm evaluation) was 0.19% (IQR 0.00–0.93), equivalent to 2.7 min (IQR 0.0–13.4) per day. In HM-transmitted ECG strips with regular sinus rhythm, P-waves were visible in 89 ± 24% of heart cycles. Patient-individual automatic Home Monitoring transmission success was 98.0% ± 5.5%. Conclusions: The novel ICM performed well in all aspects studied, including fast insertion, reliable R-wave sensing, good P-wave visibility, and highly successful HM transmissions.The study was supported by Biotronik SE & Co. KG, Berlin, Germany, which assisted in study design, data collection, data analysis and interpretation, and preparing this report. The corresponding author had full access to the data and had final responsibility for the decision to submit for publication

    Miniaturized implantable cardiac monitor with a long sensing vector (BIOMONITOR III): Insertion procedure assessment, sensing performance, and home monitoring transmission success

    No full text
    Background: Implantable Cardiac Monitors (ICMs) are used for long-term monitoring of arrhythmias. BIOMONITOR III is a novel ICM with a miniaturized profile, long sensing vector due to a flexible antenna, simplified implantation with a dedicated insertion tool for pocket formation and ICM placement in a single step, and daily automatic Home Monitoring (HM) function. Methods: In 47 patients undergoing BIOMONITOR III insertion for any ICM indication, 16 investigators at 10 Australian sites assessed handling characteristics of the insertion tool, R-wave amplitudes, noise burden, P-wave visibility, and HM transmission success. Patients were followed for 1 month. Results: All 47 attempted insertions were successful. Median time from skin incision to removal of the insertion tool after ICM insertion was 39 s (IQR 19–65) and to wound closure and cleaning was 4.7 min (IQR 3.5–7.8). All aspects of the insertion tool were rated as “good” or “excellent” in ≥97.9% and “fair” in ≤2.1% of patients, except for “force needed for tunnelling” (91.5% good/excellent, 8.5% fair). Based on HM data, R-waves in the first month were stable at 0.70 ± 0.37 mV. Median noise burden (disabling automatic rhythm evaluation) was 0.19% (IQR 0.00–0.93), equivalent to 2.7 min (IQR 0.0–13.4) per day. In HM-transmitted ECG strips with regular sinus rhythm, P-waves were visible in 89 ± 24% of heart cycles. Patient-individual automatic Home Monitoring transmission success was 98.0% ± 5.5%. Conclusions: The novel ICM performed well in all aspects studied, including fast insertion, reliable R-wave sensing, good P-wave visibility, and highly successful HM transmissions

    International external validation study of the 2014 European society of cardiology guidelines on sudden cardiac death prevention in hypertrophic cardiomyopathy (EVIDENCE-HCM)

    Get PDF
    BACKGROUND: Identification of people with hypertrophic cardiomyopathy (HCM) who are at risk of sudden cardiac death (SCD) and require a prophylactic implantable cardioverter defibrillator is challenging. In 2014, the European Society of Cardiology proposed a new risk stratification method based on a risk prediction model (HCM Risk-SCD) that estimates the 5-year risk of SCD. The aim was to externally validate the 2014 European Society of Cardiology recommendations in a geographically diverse cohort of patients recruited from the United States, Europe, the Middle East, and Asia. METHODS: This was an observational, retrospective, longitudinal cohort study. RESULTS: The cohort consisted of 3703 patients. Seventy three (2%) patients reached the SCD end point within 5 years of follow-up (5-year incidence, 2.4% [95% confidence interval {CI}, 1.9-3.0]). The validation study revealed a calibration slope of 1.02 (95% CI, 0.93-1.12), C-index of 0.70 (95% CI, 0.68-0.72), and D-statistic of 1.17 (95% CI, 1.05-1.29). In a complete case analysis (n= 2147; 44 SCD end points at 5 years), patients with a predicted 5-year risk of <4% (n=1524; 71%) had an observed 5-year SCD incidence of 1.4% (95% CI, 0.8-2.2); patients with a predicted risk of ≥6% (n=297; 14%) had an observed SCD incidence of 8.9% (95% CI, 5.96-13.1) at 5 years. For every 13 (297/23) implantable cardioverter defibrillator implantations in patients with an estimated 5-year SCD risk ≥6%, 1 patient can potentially be saved from SCD. CONCLUSIONS: This study confirms that the HCM Risk-SCD model provides accurate prognostic information that can be used to target implantable cardioverter defibrillator therapy in patients at the highest risk of SCD
    corecore