17 research outputs found

    A fuzzy approach for feature extraction of brain tissues in Non-Contrast CT

    Get PDF
    In neuroimaging, brain tissue segmentation is a fundamental part of the techniques that seek to automate the detection of pathologies, the quantification of tissues or the evaluation of the progress of a treatment. Because of its wide availability, lower cost than other imaging techniques, fast execution and proven efficacy, Non-contrast Cerebral Computerized Tomography (NCCT) is the most used technique in emergency room for neuroradiology examination, however, most research on brain segmentation focuses on MRI due to the inherent difficulty of brain tissue segmentation in NCCT. In this work, three brain tissues were characterized: white matter, gray matter and cerebrospinal fluid in NCCT images. Feature extraction of these structures was made based on the radiological attenuation index denoted by the Hounsfield Units using fuzzy logic techniques. We evaluated the classification of each tissue in NCCT images and quantified the feature extraction technique in images from real tissues with a sensitivity of 92% and a specificity of 96% for images from cases with slice thickness of 1 mm, and 96% and 98% respectively for those of 1.5 mm, demonstrating the ability of the method as feature extractor of brain tissues.Postprint (published version

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    36th International Symposium on Intensive Care and Emergency Medicine : Brussels, Belgium. 15-18 March 2016.

    Get PDF

    Why does GM1 induce a potent beneficial response to experimental Chagas disease?

    No full text
    Being one of the world’s neglected diseases, Chagas has neither a vaccine nor a satisfactory therapy. Inoculation of murine models with the ganglioside GM1 has shown a strikingly nonlinear effect, leading to a strong decrease in parasite load at low doses but reverting to a load increase at high doses. Cardiocyte destruction concomitant with the disease is also significantly reduced by a moderate application of GM1. A mathematical model for the interaction between the parasite and the immune system is shown to explain these effects and is used to predict an optimal dosage that maximizes parasite removal with minimal cardiocyte destruction
    corecore