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ABSTRACT
In neuroimaging, brain tissue segmentation is a fundamental part of the techniques that seek to automate the de-
tection of pathologies, the quantification of tissues or the evaluation of the progress of a treatment. Because of 
its wide availability, lower cost than other imaging techniques, fast execution and proven efficacy, Non-contrast 
Cerebral Computerized Tomography (NCCT) is the most used technique in emergency room for neuroradiology 
examination, however, most research on brain segmentation focuses on MRI due to the inherent difficulty of brain 
tissue segmentation in NCCT. In this work, three brain tissues were characterized: white matter, gray matter and 
cerebrospinal fluid in NCCT images. Feature extraction of these structures was made based on the radiological atte-
nuation index denoted by the Hounsfield Units using fuzzy logic techniques. We evaluated the classification of each 
tissue in NCCT images and quantified the feature extraction technique in images from real tissues with a sensitivity 
of 92% and a specificity of 96% for images from cases with slice thickness of 1 mm, and 96% and 98% respectively 
for those of 1.5 mm, demonstrating the ability of the method as feature extractor of brain tissues.
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RESUMEN
En neuroimagen, la segmentación de tejidos cerebrales es una parte fundamental de las técnicas que buscan au-
tomatizar la detección de patologías, la cuantificación de tejidos o la evaluación del progreso de un tratamiento. 
Debido a su amplia disponibilidad, menor costo que otras técnicas de imagen, rápida ejecución y eficacia probada, 
la tomografía computarizada cerebral sin contraste (TCNC) es la técnica mayormente utilizada en emergencias para 
el examen neurorradiológico, sin embargo, la dificultad inherente que representa la segmentación de los tejidos 
cerebrales, hace que la mayoría de las investigaciones sobre la segmentación del cerebro se centren en la resonan-
cia magnética. En este trabajo se realizó la caracterización de tres tejidos cerebrales: sustancia blanca, sustancia 
gris y líquido cefalorraquídeo en imágenes TCNC. Dichas estructuras fueron caracterizadas con base en el índice 
de atenuación radiológica denotadas por las Unidades Hounsfield utilizando técnicas de lógica difusa. Se evaluó la 
caracterización de cada tejido en diversos cortes de TCNC y se cuantificó la técnica de extracción de características 
en imágenes a partir de tejidos reales con una sensibilidad de 92% y una especificidad de 96% para tejidos en cortes 
de 1 mm de grosor y 96% y 98% para los de 1.5 mm demostrando la habilidad del método como extractor de carac-
terísticas de los tejidos cerebrales.

PALABRAS CLAVE: Segmentación de tejidos cerebrales, TCNC, lógica difusa
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INTRODUCTION
Computed Tomography (CT) and Magnetic Resonance 

Imaging (MRI) are the mainstays of neuroimaging. 
Even with its main drawbacks: ionizing radiation and 
limited soft tissue contrast compared to MRI, cranial 
CT remains an often utilized modality in the emer-
gency room because of its wide availability (average of 
24 for CT in OECD countries vs 14 for MRI [1]), quick 
results, and accuracy in detecting intracranial hemor-
rhage, middle ear/temporal bone pathology, bone 
lesions, and fractures of the spine or skull [2]. Several 
contributions have been made to pattern recognition 
techniques and medical image analysis, in order to 
develop and implement automatic tools that can 
improve the efficiency of pathology detection based on 
the segmentation of anatomical structures [3][4]. In neu-
roimaging, brain tissue segmentation (BTS) plays a key 
role in the study of various abnormalities, brain devel-
opment and evaluation of the progress of treatment [5]. 
BTS is important for subsequent applications such as 
tissue dependent perfusion analysis and automated 
detection and quantification of cerebral pathology [6]. 
Cerebrospinal fluid (CSF), white matter (WM) and gray 
matter (GM) are the basic tissue types in BTS. 
Subsections of the image with specific characteristics 
are labeled with the aim of achieving homogeneous 
partitions representing CSF, WM and GM. Because it 
provides superior contrast of soft tissue structures, 
MRI is the method of choice for imaging the brain and 
most research on brain segmentation focuses on MRI 
[7]. In CT the research is mostly limited to the segmen-
tation of the pathology, without segmenting the brain 
tissues separately [6][8]. In order to segment and obtain 
an estimate of total intracranial volume, in [9] was pro-
posed an algorithm that combines morphological oper-
ations, intensity thresholding and mixture modelling 
from CT and MRI. The model in CT was limited to the 
quantification of two classes: tissue (brain tissue and 
CSF) and bone, whereas in MRI the classes of WM and 
GM were quantified separately. Inspired by sparsity 
constrained classification, in [10] was proposed a dictio-

nary learning framework for image segmentation. 
Experiments performed on infant CT brain images 
accurately segmented three classes: CSF, brain and 
subdural hematoma collections. Berndt et al. [11] evalu-
ated the ability of single and dual energy computed 
tomography (SECT, DECT) to estimate tissue composi-
tion and density for usage in Monte Carlo simulations 
of irradiation induced β+ activity distributions. A 
DECTbased brain tissue segmentation method was 
developed for WM, GM and CSF. The elemental compo-
sition of reference tissues was assigned to closest CT 
numbers in DECT space. Unfortunately, in comparison 
to MR brain segmentation, Dice similarity coefficients 
for WM, GM and CSF were 0.61, 0.67 and 0.66.

The inherent difficulty in extracting relevant and 
non-redundant features, segmenting and quantifying 
brain tissues, has increased the use of soft computing 
techniques in brain tissue segmentation. Fuzzy logic 
has the potential to combine human heuristics in com-
puter-aided decision making, it opens the door to con-
struction of better models of reality and involves 
exploitation of a tolerance for imprecision [12]. Fuzzy 
logic has been applied in all disciplines of medicine in 
some form of classification, detection, segmentation 
and control [13][14][15], and recently its applicability in 
neurosciences, especially in brain tissue segmenta-
tion, is also increasing [16][17][18].

In this paper, a fuzzy approach is presented for brain 
tissues (CSF, WM and GM) feature extraction in Non- 
Contrast Computed Tomography. The structures were 
characterized based on the radiological attenuation 
index denoted by the Hounsfield Units.

MATERIAL AND METHODS
The methodology is composed of three main ele-

ments: pre-processing, feature extraction and valida-
tion of features. The data used in this study were 
obtained from the College of Radiology and Imaging 
Specialists of Ciudad Juárez. We used NCCT brain 
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imaging, 120 cases of non-pathological patients (male 
and female) with thicknesses of 1 mm (74 cases) and 
1.5 mm (46 cases) and mean ages of 30 ± 20 years. 
Image datasets have a resolution of 512 x 512 pixels 
(16-bits). The cases were collected from 3 CT scanners. 
from two hospitals located in Cd. Juárez, México. Their 
use in this research was approved by a bioethics 
com-mittee. We used 40 cases for the training dataset 
and the rest for the test dataset.

Pre-processing
In this first stage of the methodology it was necessary 

to perform the standardization of the images through 
two steps: the gray scale conversion to Hounsfield 
Units, and a skull stripping algorithm to delimit the 
region of interest. We identified and discarded all 
cases containing CT artifacts: noise, beam hardening, 
scatter, pseudoenhancement, motion, cone beam, 
helical, ring, and metal artifacts [19]. 

Conversion to Hounsfield Units
A Hounsfiel Unit is the number assigned to each pixel 

in the CT image and is the expression of the density of 
the irradiated object. It represents the absorption char-
acteristics or the linear attenuation coefficient of a par-
ticular volume of tissue. The HU scale has a range from 
-1000 to +1000, each constituting a different level of 
optical density. This scale of relative densities is based 
on air (-1000), water (0) and dense bone (+1000). The CT 
cases from DICOM files are in gray levels, therefore they 
were converted to HU following next equation:

(1)

where Y is the gray level, m is the rescale slope and a 
is the rescale intercept, these two data can be found in 
the information contained in the DICOM file.

Skull stripping
Skull stripping (SS) aims to segment the brain tissue 

from the skull and non-brain intracranial tissues. It is an 

important pre-processing step in neuroimaging analysis 
before other processing algorithms can be applied [20]. 
We implemented the SS algorithm proposed in [21]. The 
main features of this skull stripping algorithm are the 
simplicity and robustness. It is simple since neither pre-
processing of the image data nor contour refinement is 
required. This algorithm creates an image mask of the 
brain that limits processing to only those pixels con-
tained by the mask. The SS algorithm is divided into four 
steps: binarization, morphological closing, subtraction 
to eliminate the skull and area labelling.

Binarization: once the window setting is performed 
defining the upper and lower tissue densities (ud and 
ld respectively, values for display on brain CT: center 
35, window width 70, the original image Oim is bina-
rized (Bim) as:

(2)

Morphological closing: a morphological closing (Eq. 3) 
was performed to eliminate small holes, filling and 
connecting them to near components. A disk shaped 
structural element (se) was used:

(3)

Subtraction to eliminate the skull: a new image (Sim) is 
obtained subtracting the closed image from the ori-
gi-nal image in order to separate the brain tissue from 
the rest of the image.

(4)

Area labeling: neighborhoods of contiguous pixels are 
labeled in order to define the encephalon as the largest 
area (A) found in the image. The mask Mim contains the 
intracranial region data where the background and 
skull are discarded.
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Feature extraction
At this stage, under the guidance of two expert neu-

roradiologists, subsets of brain tissue (CSF, WM and 
GM) were selected with the aim of analyzing their HU 
characteristics. The subsets were mainly obtained for 
white matter, from the region of the knee of the corpus 
callosum and semioval centers; for gray matter, of the 
head and body of the caudate nucleus; and the ventri-
cles for cerebrospinal fluid. The training set was com-
posed of 1920 tissue samples: 4 samples (sub images of 
at least 10 x 10 pixels) of each tissue using 4 slices (per 
case) of the 40 cases.

(5)

FIGURE 1. Histograms of 20 white matter tissue samples.

TABLE 1. Main statistical measurements
in Hounsfield Units of NCCT brain tissues
for different slice thickness ('th' in mm).TABLA 

 
Tissue th min max mean var 

CSF 
1 0 14 6.4 11.7 

1.5 0 14 6.1 8.6 

WM 
1 17 46 29.4 18.8 

1.5 20 36 29.9 7.1 

GM 
1 28 64 46.4 35.7 

1.5 31 59 44.5 17.9 
 
 
 

 CSF WM GM Total 

CSF 9531 468 1 10000 

WM 272 8891 837 10000 

GM 2 1075 8923 10000 

Total 9805 10434 9761 30000 

Overall Accuracy 91% 
 
 
 

 TP TN FP FN TPR SPC 

CSF 10000 20000 274 469 96% 99% 

WM 10000 20000 1543 1109 90% 93% 

GM 10000 20000 838 1077 90% 96% 

     92% 96% 
 
 
 

 CSF WM GM Total 

CSF 2384 16 0 2400 

WM 0 2449 351 2800 

GM 0 28 2772 2800 

Total 2384 2493 3123 8000 

Overall Accuracy 95% 
 
 
 

 TP TN FP FN TPR SPC 

CSF 24000 56000 0 16 99% 100% 

WM 28000 52000 44 351 89% 99% 

GM 28000 52000 351 28 99% 94% 

     96% 98% 
 

Histogram analysis
After the tissue samples were selected we obtained 

their corresponding histogram (Fig. 1) and analyzed 
its HU characteristics (Table 1).

We arranged the frequencies of the tissue samples 
into three vectors and obtained their corresponding 
histograms (Fig. 2). The cerebrospinal fluid presents 
the lowest values in HU followed by those of the white 
matter, and the gray matter with the highest values. 
The histograms of gray and white matter overlap in 
their distributions, the overlap becomes greater as the 
slice thickness is thinner.

Fuzzy Membership Functions
The basic element in fuzzy systems is the member-

ship function (mf). For this study was necessary to 
define an appropriate set of mfs that could be correctly 
adapted to NCCT data, and consequently to efficiently 
separate WM and GM tissues. A fuzzy set A is defined 
using a membership function for the elements of a 
universe of discourse U with elements in the [0,1] 

FIGURE 2. Normalized histograms of 1 mm (top)
and 1.5 mm (bottom) CSF, WM and GM.
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interval. The closer A(u) is to 1 the higher would be the 
membership of object u to set A. Membership func-
tions are generally denoted by μ, being the most com-
mon the triangular and trapezoidal.

We selected the membership function based on the 
cumulative distribution function [22] due to its proven 
classification efficiency in histograms with varying 
degrees of asymmetry and overlapping. The mathe-
matical description is as follows:

(6)

C is the characteristic to be assessed in a population. 
cdfL(pij) and cdfR(pij) are the values of the left and 
right cumulative distribution functions associated to 
pixel pij for the characteristic C. a1 and a2 are parame-
ters in the (0,1) interval that must be adjusted accord-
ing to the overlap between the populations to be eval-
uated, increasing their value proportionally to the 
overlapping degree. Using Eq. (6), a membership func-
tion associated to each of the histograms of CSF, WM 
and WM, μCSF, μWM and μGM, was implemented (Fig. 3).

A pixel pij is CSF if Eq. (7) is fulfilled, is WM if (8), and 
GM if (9).

FIGURE 3. Histograms of CSF, WM and GM
and their corresponding membership functions.

(7)

(8)

(9)

Validation of features
The extracted features were validated by means of a 

quantitative classification, for this, several images 
were generated (Fig. 4) from real tissues extracted 
from cases that did not belong to the training set. The 
images contained at least 100 pixels of CSF, WM and 
GM tissue. Subsequently, real images were classified in 
order to qualitatively analyze the characterization of 
each tissue.

RESULTS AND DISCUSSION
The conditions of equations 8, 9 and 10 were evalu-

ated in the synthetic images. For each input image, an 
output image was obtained where black was used to 
represent CSF, gray for GM and white for WM. Figure 5 
shows three examples of synthetic images from real 
tissues and their corresponding classification. A mis-
classification can be observed as a pixel of a different 
color to the one assigned to that tissue, for example in 
Fig. 5, the black pixel observed in the WM tissue 
(white) in output image 1 indicates that one WM pixel 
was misclassified as CSF (black).

FIGURE 4. Sample image from real tissues. It contains
two samples of GM tissue and one sample of CSF and WM.
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TABLE 2. Error matrix of the classification
of brain tissues for synthetic images

from cases with slice thickness of 1 mm.

TABLE 3. True positive and negative rates
of the classification of brain tissues for synthetic
 images from cases with slice thickness of 1 mm.

TABLA 
 

Tissue th min max mean var 

CSF 
1 0 14 6.4 11.7 

1.5 0 14 6.1 8.6 

WM 
1 17 46 29.4 18.8 

1.5 20 36 29.9 7.1 

GM 
1 28 64 46.4 35.7 

1.5 31 59 44.5 17.9 
 
 
 

 CSF WM GM Total 

CSF 9531 468 1 10000 

WM 272 8891 837 10000 

GM 2 1075 8923 10000 

Total 9805 10434 9761 30000 

Overall Accuracy 91% 
 
 
 

 TP TN FP FN TPR SPC 

CSF 10000 20000 274 469 96% 99% 

WM 10000 20000 1543 1109 90% 93% 

GM 10000 20000 838 1077 90% 96% 

     92% 96% 
 
 
 

 CSF WM GM Total 

CSF 2384 16 0 2400 

WM 0 2449 351 2800 

GM 0 28 2772 2800 

Total 2384 2493 3123 8000 

Overall Accuracy 95% 
 
 
 

 TP TN FP FN TPR SPC 

CSF 24000 56000 0 16 99% 100% 

WM 28000 52000 44 351 89% 99% 

GM 28000 52000 351 28 99% 94% 

     96% 98% 
 

TABLA 
 

Tissue th min max mean var 

CSF 
1 0 14 6.4 11.7 

1.5 0 14 6.1 8.6 

WM 
1 17 46 29.4 18.8 

1.5 20 36 29.9 7.1 

GM 
1 28 64 46.4 35.7 

1.5 31 59 44.5 17.9 
 
 
 

 CSF WM GM Total 

CSF 9531 468 1 10000 

WM 272 8891 837 10000 

GM 2 1075 8923 10000 

Total 9805 10434 9761 30000 

Overall Accuracy 91% 
 
 
 

 TP TN FP FN TPR SPC 

CSF 10000 20000 274 469 96% 99% 

WM 10000 20000 1543 1109 90% 93% 

GM 10000 20000 838 1077 90% 96% 

     92% 96% 
 
 
 

 CSF WM GM Total 

CSF 2384 16 0 2400 

WM 0 2449 351 2800 

GM 0 28 2772 2800 

Total 2384 2493 3123 8000 

Overall Accuracy 95% 
 
 
 

 TP TN FP FN TPR SPC 

CSF 24000 56000 0 16 99% 100% 

WM 28000 52000 44 351 89% 99% 

GM 28000 52000 351 28 99% 94% 

     96% 98% 
 

FIGURE 5. Examples of synthetic images from real
tissues: white matter, grey matter and cerebrospinal

fluid, and their corresponding classification.

Table 2 and Table 3 show the confusion or error 
matrix and the results of the true positive rate (TPR) 
or sensitivity and the true negative rate or specificity 
(SPC) for the images from cases with slice thickness 
of 1 mm.

TABLE 4. Error matrix of the classification
of brain tissues for synthetic images

from cases with slice thickness of 1.5 mm.

TABLE 5. True positive and negative rates
of the classification of brain tissues for synthetic
images from cases with slice thickness of 1.5 mm.

TABLA 
 

Tissue th min max mean var 

CSF 
1 0 14 6.4 11.7 

1.5 0 14 6.1 8.6 

WM 
1 17 46 29.4 18.8 

1.5 20 36 29.9 7.1 

GM 
1 28 64 46.4 35.7 

1.5 31 59 44.5 17.9 
 
 
 

 CSF WM GM Total 

CSF 9531 468 1 10000 

WM 272 8891 837 10000 

GM 2 1075 8923 10000 

Total 9805 10434 9761 30000 

Overall Accuracy 91% 
 
 
 

 TP TN FP FN TPR SPC 

CSF 10000 20000 274 469 96% 99% 

WM 10000 20000 1543 1109 90% 93% 

GM 10000 20000 838 1077 90% 96% 

     92% 96% 
 
 
 

 CSF WM GM Total 

CSF 2384 16 0 2400 

WM 0 2449 351 2800 

GM 0 28 2772 2800 

Total 2384 2493 3123 8000 

Overall Accuracy 95% 
 
 
 

 TP TN FP FN TPR SPC 

CSF 24000 56000 0 16 99% 100% 

WM 28000 52000 44 351 89% 99% 

GM 28000 52000 351 28 99% 94% 

     96% 98% 
 

TABLA 
 

Tissue th min max mean var 

CSF 
1 0 14 6.4 11.7 

1.5 0 14 6.1 8.6 

WM 
1 17 46 29.4 18.8 

1.5 20 36 29.9 7.1 

GM 
1 28 64 46.4 35.7 

1.5 31 59 44.5 17.9 
 
 
 

 CSF WM GM Total 

CSF 9531 468 1 10000 

WM 272 8891 837 10000 

GM 2 1075 8923 10000 

Total 9805 10434 9761 30000 

Overall Accuracy 91% 
 
 
 

 TP TN FP FN TPR SPC 

CSF 10000 20000 274 469 96% 99% 

WM 10000 20000 1543 1109 90% 93% 

GM 10000 20000 838 1077 90% 96% 

     92% 96% 
 
 
 

 CSF WM GM Total 

CSF 2384 16 0 2400 

WM 0 2449 351 2800 

GM 0 28 2772 2800 

Total 2384 2493 3123 8000 

Overall Accuracy 95% 
 
 
 

 TP TN FP FN TPR SPC 

CSF 24000 56000 0 16 99% 100% 

WM 28000 52000 44 351 89% 99% 

GM 28000 52000 351 28 99% 94% 

     96% 98% 
 

The same is shown in Table 4 and Table 5 for slices of 
1.5 mm.

In both cases, those of 1 mm and 1.5 mm, some 
mis-classifications were presented in the HU in which 
WM overlaps with GM. However, considering the over-
lap that exists between WM and GM tissues, the TPR 
and SPC values of the three tissues, as well as the over-
all accuracy demonstrate a correct feature extraction 
and consequent outstanding classification. These 
results can be appreciated in the images of Fig. 6, 
where the 3 tissues are clearly distinguished.
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CONCLUSIONS
The correct feature extraction of brain tissues: cere-

brospinal fluid, white matter and gray matter in 
non-pathological cases of NCCT, was achieved in slice 
thickness of 1 mm and 1.5 mm. The benefits of the 
membership function based on the cumulative distri-
bution function allowed the correct separation and 
quantification of the three tissues, which until now 

had not been reported in the literature. The member-
ship function correctly adapts to the non-symmetrical 
and overlapping distributions of the brain tissues, 
reinforcing the idea of continuing to work with fuzzy 
logic techniques. It is also necessary to extend this 
work using segmentation techniques that reduce mis-
classifications, and adapt this model for its use in the 
quantification of brain tissue volumes.

FIGURE 6. Results of the classification of the three tissues in NCCT images: CSF in black, WM in white, and GM in gray.
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