93 research outputs found

    From diversity to strategy: Livestock research for effective policy in a climate change world

    Get PDF
    European livestock agriculture is extraordinarily diverse, and so are the challenges it faces. This diversity has contributed to the development of a fragmented set of research communities. As a result, livestock research is often under-represented at policy level, despite its high relevance for the environment and food security. Understanding livestock systems and how they can sustainably adapt to global change requires inputs across research areas, including grasslands, nutrition, health, welfare and ecology. It also requires experimental researchers, modellers and stakeholders to work closely together. Networks and capacity building structures are vital to enable livestock research to meet the challenges of climate change. They need to maintain shared resources and provide non-competitive arenas to share and synthesize results for policy support.  Long term strategic investment is needed to support such structures. Their leadership requires very different skills to those effective in scientific project coordination.

    LiveM Highlights and outlook

    Get PDF
    Improving health and welfare is an important adaptation and mitigation strategyDeveloping process based modelling, responsive to adaptationLinks to climate and land use change modelling are essential Livestock systems likely to be hit hardest by climate changeNeed to develop animal health models that respond to adaptation by farmersBringing together direct and indirect impacts of climate change vitalAdaptation and mitigation need to be considered and modelled togetherLinking models across scales is important to support policy decisionsLearning between sectors carries potential for novel solutions and methodological advancesEffective communication of outcomes to stakeholders (how?

    A Tier 3 Method for Enteric Methane in Dairy Cows Applied for Fecal N Digestibility in the Ammonia Inventory

    Get PDF
    The current inventory of N emission from cow excreta relies on fecal N digestibility data in Dutch feeding tables, assuming additivity of dietary ingredients to obtain diet values (CVB model). Alternatively, fecal N digestibility can be estimated by a dynamic, mechanistic model of digestion in the gastrointestinal tract, currently used as Tier 3 for enteric methane prediction in the Netherlands (Tier 3 model). Estimates of in situ rumen degradation characteristics for starch, neutral detergent fiber (NDF) and crude protein used as an input for the Tier 3 model were based on Dutch feeding tables (the protein evaluation system). Both methods were evaluated on independent dataset on fecal N digestibility that was constructed from peer-reviewed papers on N balance data for dairy cows published since 1999 (54 trials, 242 treatment means). Results indicate that observed apparent fecal N digestibility (67.0 ± 6.77%) was systematically over-predicted in particular by the CVB model (73.8 ± 4.35%) compared to the Tier 3 model (69.8 ± 4.52%). For the dataset including only observations from Dutch trials the observed fecal N digestibility (70.4 ± 7.33%) was also systematically over-predicted by the CVB model (76.4 ± 5.27%) but not by the Tier 3 model (69.7 ± 5.81%). Mixed model analysis with study as random factor indicated the slope of the regression between observed and predicted fecal N digestibility to be smaller than 1, in particular for the CVB model (CVB model slope varied between 0.405 and 0.560 and Tier 3 model slope between 0.418 and 0.657). The over-prediction by the CVB model with 6–7%-units of digestibility will lead to an over-predicted ammoniacal N excretion (urinary N) in the ammonia inventory, and biased estimation of N mitigating potential of nutritional measures. The present study demonstrates the benefit of using the Tier 3 model to predict the average level of apparent fecal N digestibility compared to the CVB model. The general estimates of in situ rumen degradation characteristics for starch, NDF and crude protein used as input for the Tier 3 model seemed applicable for the Dutch trials but less so for the non-Dutch trials

    Enteric methane mitigation strategies for ruminant livestock systems in the Latin America and Caribbean region: A meta-analysis

    Get PDF
    Latin America and Caribbean (LAC) is a developing region characterized for its importance for global food security, producing 23 and 11% of the global beef and milk production, respectively. The region’s ruminant livestock sector however, is under scrutiny on environmental grounds due to its large contribution to enteric methane (CH4) emissions and influence on global climate change. Thus, the identification of effective CH4 mitigation strategies which do not compromise animal performance is urgently needed, especially in context of the Sustainable Development Goals (SDG) defined in the Paris Agreement of the United Nations. Therefore, the objectives of the current study were to: 1) collate a database of individual sheep, beef and dairy cattle records from enteric CH4 emission studies conducted in the LAC region, and 2) perform a meta-analysis to identify feasible enteric CH4 mitigation strategies, which do not compromise animal performance. After outlier’s removal, 2745 animal records (65% of the original data) from 103 studies were retained (from 2011 to 2021) in the LAC database. Potential mitigation strategies were classified into three main categories (i.e., animal breeding, dietary, and rumen manipulation) and up to three subcategories, totaling 34 evaluated strategies. A random effects model weighted by inverse variance was used (Comprehensive Meta-Analysis V3.3.070). Six strategies decreased at least one enteric CH4 metric and simultaneously increased milk yield (MY; dairy cattle) or average daily gain (ADG; beef cattle and sheep). The breed composition F1 Holstein × Gyr decreased CH4 emission per MY (CH4IMilk) while increasing MY by 99%. Adequate strategies of grazing management under continuous and rotational stocking decreased CH4 emission per ADG (CH4IGain) by 22 and 35%, while increasing ADG by 22 and 71%, respectively. Increased dietary protein concentration, and increased concentrate level through cottonseed meal inclusion, decreased CH4IMilk and CH4IGain by 10 and 20% and increased MY and ADG by 12 and 31%, respectively. Lastly, increased feeding level decreased CH4IGain by 37%, while increasing ADG by 171%. The identified effective mitigation strategies can be adopted by livestock producers according to their specific needs and aid LAC countries in achieving SDG as defined in the Paris Agreemen

    Modelo para simulação da dinâmica de partículas do alimento no rúmen de bovinos alimentados com cana-de-açúcar

    Get PDF
    Animal simulation models are sets of equations used to describe biological processes. A non-steady state simulation model of cattle digestion is presented in order to represent nutrient availability as a response to feed intake pattern and the kinetics of particle size reduction. Variables representing the particle size reduction and discontinuous voluntary feed intake were included in a mechanistic model created to optimize the supplementation of sugarcane based diets. In general the predicted values were very close to observed values for fibre and nitrogen flows. The model has not shown consistent bias in relation to the behavior of the observed data of duodenal flow of neutral detergent fiber and non-ammonia nitrogen. Milk production simulations were quite close to actual values. Predictions were improved by the non steady-state model, taking into account variable intake rate in relation to the previous steady-state model. The model can be used to select strategies for supplementation of cattle fed sugarcane based diets.Modelos de simulação animal são conjuntos de equações utilizados para descrever processos biológicos. Um modelo de simulação da digestão de bovinos em condições de ingestão descontínua é apresentado com objetivo de representar a disponibilidade de nutrientes como resposta ao padrão de consumo de alimentos e à cinética da redução do tamanho de partícula. Variáveis representando a redução do tamanho de partículas e consumo de alimento descontinuo foram incluídas em um modelo mecanicista criado para aperfeiçoar a suplementação de dietas à base de cana-de-açúcar. Os valores estimados estiveram muito próximos dos valores observados para fluxos de fibra e nitrogênio. O modelo não apresentou desvios consistentes dos valores observados de fluxo duodenal de fibra em detergente neutro e nitrogênio não-amoniacal. A média geral das produções de leite foi estimada com precisão. As estimativas sob condições de disponibilidade variável de nutrientes apresentaram maior precisão quando comparadas com o modelo anterior que assumia consumo continuo de nutrientes. O modelo pode ser usado para selecionar estratégias de suplementação de dietas à base de cana-de-açúcar em vacas em lactação

    MACSUR Phase 1 Final Administrative Report: Public release

    Get PDF
    MACSUR's foremost charge is improving the methodology for integrative inter-disciplinary modelling of European agriculture. In addition to technical changes, improvements include the involvement of stakeholders for setting research priorities, scenarios (if-then evaluations), and model parameters to more realistic or region-specific values. The Knowledge Hub currently brings together 300 members from 18 countries and has generated 300 scientific papers, over 500 presentations and 20 workshops and conferences within the first three years. Scientific results are communicated in conferences and workshops, where policymakers take part by invitation or because of professional interest. These events also provide opportunities for direct dialogues between policy­makers and scientists. The primary form of output of the research network is scientific publications that are cited in policy documents by relevant administrative depart­ments, ministries, intergovern­mental agencies, and directorate-generals, and non-governmental interest groups. MACSUR members also contribute directly to policy documents as authors, e.g. the EEA's indicator report on CC impacts or the IPCC's 5th assessment report's chapter on food security.

    Prediction of enteric methane production, yield and intensity in dairy cattle using an intercontinental database

    Get PDF
    Enteric methane (CH4) production from cattle contributes to global greenhouse gas emissions. Measurement of enteric CH4 is complex, expensive and impractical at large scales; therefore, models are commonly used to predict CH4 production. However, building robust prediction models requires extensive data from animals under different management systems worldwide. The objectives of this study were to (1) collate a global database of enteric CH4 production from individual lactating dairy cattle; (2) determine the availability of key variables for predicting enteric CH4 production (g/d per cow), yield [g/kg dry matter intake (DMI)], and intensity (g/kg energy corrected milk) and their respective relationships; (3) develop intercontinental and regional models and cross-validate their performance; and (4) assess the trade-off between availability of on-farm inputs and CH4 prediction accuracy. The intercontinental database covered Europe (EU), the US (US), Chile (CL), Australia (AU), and New Zealand (NZ). A sequential approach was taken by incrementally adding key variables to develop models with increasing complexity. Methane emissions were predicted by fitting linear mixed models. Within model categories, an intercontinental model with the most available independent variables performed best with root mean square prediction error (RMSPE) as a percentage of mean observed value of 16.6, 14.4, and 19.8% for intercontinental, EU, and US regions, respectively. Less complex models requiring only DMI had predictive ability comparable to complex models. Enteric CH4 production, yield, and intensity prediction models developed on an intercontinental basis had similar performance across regions, however, intercepts and slopes were different with implications for prediction. Revised CH4 emission conversion factors for specific regions are required to improve CH4 production estimates in national inventories. In conclusion, information on DMI is required for good prediction, and other factors such as dietary NDF concentration, improve the prediction. For enteric CH4 yield and intensity prediction, information on milk yield and composition is required for better estimation

    Challenges and research gaps in the area of integrated climate change risk assessment for European agriculture and food security

    Get PDF
    Priorities in addressing research gaps and challenges should follow the order of im­por­tance, which in itself would be a matter of defining goals and metrics of importance, e.g. the extent, impact and likelihood of occurrence. For improving assessments of cli­mate change impacts on agriculture for achieving food security and other sustainable develop­ment goals across the European continent, the most important research gaps and challen­ges appear to be the agreement on goals with a wide range of stakeholders from policy, science, producers and society, better reflection of political and societal prefer­ences in the modelling process, and the reflection of economic decisions in farm manage­ment within models. These and other challenges could be approached in phase 3 of MACSUR
    corecore