106 research outputs found

    Impact testing of end-winding in two hydro generators in different temperature state

    Get PDF
    A reliable operation of generators is highly dependent on the electrical and mechanical integrity of stator end-winding vibration and has been a major concern in the last two decades. This paper focuses on the experience in hammer impact testing of end-winding vibrations of parallel phase leads and series loop caps in two hydro generators in a different temperature state. The measurements were conducted using hammer testing on the two generators separately and a discussion and comparison of the results was presented in order to perceive the dependence of the temperature and dynamic characteristics of the structures. Introductory, a brief survey of recent research progress in monitoring the end-winding vibrations in generators is presented. Subsequently, a detailed description of the performed measurement, starting from the identification of the object and conducted testing methodology according to established standards is systematically exposed. Ultimately, a paramount accent will be put on the experimental results for the measured natural frequencies of the generators, perspectives and propositions on subsequent scientific will definitely not be left out

    Impact testing of hydro generators end-winding in different temperature state

    Get PDF
    The fault detection of rotating electrical machines has become very attractive field of research from vibrational aspect, because these machines are susceptible to failure due to thermal, electrical, mechanical or environmental stresses. Therefore, the vibrational analysis of generators as rotating machines will be beneficial for the generator design in the initial stage and also for online monitoring and faults diagnostics during generator operation. This paper presents a novel methodology for hammer impact testing („bump-test“) of stators end-winding vibrations with an accent on the influence of the physical parameters such as temperature. Introductory, a brief survey of recent research in the area is presented. Furthermore, a detailed description of the used instrumentation and conducted testing methodology according to established standards is systematically exposed. The measurement methodology is implemented on two generators, a cold one in its‘ repairing phase and second identical, generator in a warm condition in order to detect the damaged elements and to investigate the influence of the temperature on the dynamic characteristics (natural frequencies and rigidity) of the structures. A year later, series of same measurements on one of the generators during a process of its’ cooling were conducted. This work provides graphical, as well as numerical results for the dynamical behaviour of the structures under different thermal conditions. Ultimately, a conclusion for the dependence between the temperature and the dynamics parameters of the generator is drawn

    URBAN SOUND RECOGNITION USING DIFFERENT FEATURE EXTRACTION TECHNIQUES

    Get PDF
    The application of the advanced methods for noise analysis in the urban areas through the development of systems for classification of sound events significantly improves and simplifies the process of noise assessment. The main purpose of sound recognition and classification systems is to develop algorithms that can detect and classify sound events that occur in the chosen environment, giving an appropriate response to their users. In this research, a supervised system for recognition and classification of sound events has been established through the development of feature extraction techniques based on digital signal processing of the audio signals that are further used as an input parameter in the machine learning algorithms for classification of the sound events. Various audio parameters were extracted and processed in order to choose the best set of parameters that result in better recognition of the class to which the sounds belong. The created acoustic event detection and classification (AED/C) system could be further implemented in sound sensors for automatic control of environmental noise using the source classification that leads to reduced amount of required human validation of the sound level measurements since the target noise source is evidently defined

    Calibrating and testing tissue equivalent proportional counters with 37Ar

    Get PDF
    A method for testing and calibrating tissue equivalent proportional counters with37Ar is described.37Ar is produced by exposure of argon in its normal isotope composition to thermal neutrons. It is shown that - up to volume ratios of 0.01 of argon to the tissue equivalent gas - there is no appreciable effect of the argon admixture on the function of the proportional counter. Conventional calibration methods with characteristic x-rays or with -particles require modifications of the detectors, and they test only small sub-volumes in the counters. In contrast, argon permits calibrations and tests of the resolution that are representative for the entire counter volume and that do not require changes in detector construction. The method is equally applicable to multi-element proportional counters; it is here exemplified by its application to a long cylindrical counter of simplified design that is part of such a multi-element configuration

    Determination of the in vivo structural DNA loop organization in the genomic region of the rat albumin locus by means of a topological approach

    Get PDF
    Nuclear DNA of metazoans is organized in supercoiled loops anchored to a proteinaceous substructure known as the nuclear matrix (NM). DNA is anchored to the NM by non-coding sequences known as matrix attachment regions (MARs). There are no consensus sequences for identification of MARs and not all potential MARs are actually bound to the NM constituting loop attachment regions (LARs). Fundamental processes of nuclear physiology occur at macromolecular complexes organized on the NM; thus, the topological organization of DNA loops must be important. Here, we describe a general method for determining the structural DNA loop organization in any large genomic region with a known sequence. The method exploits the topological properties of loop DNA attached to the NM and elementary topological principles such as that points in a deformable string (DNA) can be positionally mapped relative to a position-reference invariant (NM), and from such mapping, the configuration of the string in third dimension can be deduced. Therefore, it is possible to determine the specific DNA loop configuration without previous characterization of the LARs involved. We determined in hepatocytes and B-lymphocytes of the rat the DNA loop organization of a genomic region that contains four members of the albumin gene family

    Nuclear Scaffold Attachment Sites within ENCODE Regions Associate with Actively Transcribed Genes

    Get PDF
    The human genome must be packaged and organized in a functional manner for the regulation of DNA replication and transcription. The nuclear scaffold/matrix, consisting of structural and functional nuclear proteins, remains after extraction of nuclei and anchors loops of DNA. In the search for cis-elements functioning as chromatin domain boundaries, we identified 453 nuclear scaffold attachment sites purified by lithium-3,5-iodosalicylate extraction of HeLa nuclei across 30 Mb of the human genome studied by the ENCODE pilot project. The scaffold attachment sites mapped predominately near expressed genes and localized near transcription start sites and the ends of genes but not to boundary elements. In addition, these regions were enriched for RNA polymerase II and transcription factor binding sites and were located in early replicating regions of the genome. We believe these sites correspond to genome-interactions mediated by transcription factors and transcriptional machinery immobilized on a nuclear substructure

    The Chromatin Remodeling Factor SMARCB1 Forms a Complex with Human Cytomegalovirus Proteins UL114 and UL44

    Get PDF
    Background: Human cytomegalovirus (HCMV) uracil DNA glycosylase, UL114, is required for efficient viral DNA replication. Presumably, UL114 functions as a structural partner to other factors of the DNA-replication machinery and not as a DNA repair protein. UL114 binds UL44 (HCMV processivity factor) and UL54 (HCMV-DNA-polymerase). In the present study we have searched for cellular partners of UL114. Methodology/Principal Findings: In a yeast two-hybrid screen SMARCB1, a factor of the SWI/SNF chromatin remodeling complex, was found to be an interacting partner of UL114. This interaction was confirmed in vitro by coimmunoprecipitation and pull-down. Immunofluorescence microscopy revealed that SMARCB1 along with BRG-1, BAF170 and BAF155, which are the core SWI/SNF components required for efficient chromatin remodeling, were present in virus replication foci 24–48 hours post infection (hpi). Furthermore a direct interaction was also demonstrated for SMARCB1 and UL44. Conclusions/Significance: The core SWI/SNF factors required for efficient chromatin remodeling are present in the HCMV replication foci throughout infection. The proteins UL44 and UL114 interact with SMARCB1 and may participate in the recruitment of the SWI/SNF complex to the chromatinized virus DNA. Thus, the presence of the SWI/SNF chromatin remodeling complex in replication foci and its association with UL114 and with UL44 might imply its involvement i

    Pre-replication complex proteins assemble at regions of low nucleosome occupancy within the Chinese hamster dihydrofolate reductase initiation zone

    Get PDF
    Genome-scale mapping of pre-replication complex proteins has not been reported in mammalian cells. Poor enrichment of these proteins at specific sites may be due to dispersed binding, poor epitope availability or cell cycle stage-specific binding. Here, we have mapped sites of biotin-tagged ORC and MCM protein binding in G1-synchronized populations of Chinese hamster cells harboring amplified copies of the dihydrofolate reductase (DHFR) locus, using avidin-affinity purification of biotinylated chromatin followed by high-density microarray analysis across the DHFR locus. We have identified several sites of significant enrichment for both complexes distributed throughout the previously identified initiation zone. Analysis of the frequency of initiations across stretched DNA fibers from the DHFR locus confirmed a broad zone of de-localized initiation activity surrounding the sites of ORC and MCM enrichment. Mapping positions of mononucleosomal DNA empirically and computing nucleosome-positioning information in silico revealed that ORC and MCM map to regions of low measured and predicted nucleosome occupancy. Our results demonstrate that specific sites of ORC and MCM enrichment can be detected within a mammalian intitiation zone, and suggest that initiation zones may be regions of generally low nucleosome occupancy where flexible nucleosome positioning permits flexible pre-RC assembly sites
    corecore