4 research outputs found

    Gastroprotective and antisecretory effects of Ailanthus excelsa (Roxb)

    No full text
    Ailanthus excelsa (Roxb), an Egyptian medicinal species highly important for treating numerous diseases, was investigated against experimentally induced gastric ulcer in rodents. We evaluated the gastroprotective effect of four extracts (petroleum ether, diethyl ether, chloroform, and methanol) of A. excelsa bark by using the ethanol-induced gastric lesion model. The pretreatment of animals with methanolic, petroleum ether, and chloroformic extracts (100 mg/kg, oral (p.o.)) from A. excelsa significantly reduced gastric lesion induced by ulcerogenic agent (56, 47, and 70%, respectively) when compared with animals pretreated with vehicle. However, the diethyl ether pretreatment led to the least gastric lesion damage (83%), similar to the standard antiulcer drug, cimetidine, at the same dose (100 mg/kg, p.o.). The lower effective dose of diethyl ether extract, as well as cimetidine, given by intraduodenal route, significantly increased the pH values and reduced the acid output of gastric juice. Sterols, triterpenes, and quassinoids are present in the diethyl ether extract of A. excelsa stem bark, which presented the best gastroprotective action among the studied extracts. Our study confirmed the traditional indications of A. excelsa for the treatment of gastric ulcer

    The Eurozone (Expected) Inflation: An Option's Eyes View

    No full text

    Characterisation of microbial attack on archaeological bone

    Get PDF
    As part of an EU funded project to investigate the factors influencing bone preservation in the archaeological record, more than 250 bones from 41 archaeological sites in five countries spanning four climatic regions were studied for diagenetic alteration. Sites were selected to cover a range of environmental conditions and archaeological contexts. Microscopic and physical (mercury intrusion porosimetry) analyses of these bones revealed that the majority (68%) had suffered microbial attack. Furthermore, significant differences were found between animal and human bone in both the state of preservation and the type of microbial attack present. These differences in preservation might result from differences in early taphonomy of the bones. © 2003 Elsevier Science Ltd. All rights reserved
    corecore