91 research outputs found

    Identification of gut bacteria such as Lactobacillus johnsonii that disseminate to systemic tissues of wild type and MyD88-/- mice

    Get PDF
    In healthy hosts the gut microbiota is restricted to gut tissues by several barriers some of which require MyD88-dependent innate immune sensor pathways. Nevertheless, some gut taxa have been reported to disseminate to systemic tissues. However, the extent to which this normally occurs during homeostasis in healthy organisms is still unknown. In this study, we recovered viable gut bacteria from systemic tissues of healthy wild type (WT) and MyD8

    Fantastic voyage: the journey of intestinal microbiota-derived microvesicles through the body

    Get PDF
    As part of their life cycle, Gram-negative bacteria produce and release microvesicles (outer membrane vesicles, OMVs) consisting of spherical protrusions of the outer membrane that encapsulate periplasmic contents. OMVs produced by commensal bacteria in the gastrointestinal (GI) tract of animals are dispersed within the gut lumen with their cargo and enzymes being distributed across and throughout the GI tract. Their ultimate destination and fate is unclear although they can interact with and cross the intestinal epithelium using different entry pathways and access underlying immune cells in the lamina propria. OMVs have also been found in the bloodstream from which they can access various tissues and possibly the brain. The nanosize and non-replicative status of OMVs together with their resistance to enzyme degradation and low pH, alongside their ability to interact with the host, make them ideal candidates for delivering biologics to mucosal sites, such as the GI and the respiratory tract. In this mini-review, we discuss the fate of OMVs produced in the GI tract of animals with a focus on vesicles released by Bacteroides species and the use of OMVs as vaccine delivery vehicles and other potential applications

    RRAF Report

    Get PDF
    Smith-Yoshimura K, Altman M, Conlon M, et al. Registering Researchers in Authority Files. online: OCLC Research; 2014.Registering researchers in some type of authority file or identifier system has become more compelling as both institutions and researchers recognize the need to compile their scholarly output. The report presents functional requirements and recommendations for six stakeholders: researchers, funders, university administrators, librarians, identity management systems, and aggregators (including publishers). It also provides an overview of the researcher identifier landscape, changes in the field, emerging trends, and opportunities

    Decreased production of TNF-alpha by lymph node cells indicates experimental autoimmune encephalomyelitis remission in Lewis rats

    Full text link
    Experimental autoimmune encephalomyelitis (EAE) is mediated by CD4+ Th1 cells that mainly secrete IFN-γ and TNF-α, important cytokines in the pathophysiology of the disease. Spontaneous remission is, in part, attributed to the down regulation of IFN-γ and TNF-α by TGF-β. In the current paper, we compared weight, histopathology and immunological parameters during the acute and recovery phases of EAE to establish the best biomarker for clinical remission. Female Lewis rats were immunised with myelin basic protein (MBP) emulsified with complete Freund's adjuvant. Animals were evaluated daily for clinical score and weight prior to euthanisation. All immunised animals developed the expected characteristics of EAE during the acute phase, including significant weight loss and high clinical scores. Disease remission was associated with a significant reduction in clinical scores, although immunised rats did not regain their initial weight values. Brain inflammatory infiltrates were higher during the acute phase. During the remission phase, anti-myelin antibody levels increased, whereas TNF-α and IFN-γ production by lymph node cells cultured with MBP or concanavalin A, respectively, decreased. The most significant difference observed between the acute and recovery phases was in the induction of TNF-α levels in MBP-stimulated cultures. Therefore, the in vitro production of this cytokine could be used as a biomarker for EAE remission

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
    corecore