240 research outputs found

    Critical point network for drainage between rough surfaces

    Get PDF
    In this paper, we present a network method for computing two-phase flows between two rough surfaces with significant contact areas. Low-capillary number drainage is investigated here since one-phase flows have been previously investigated in other contributions. An invasion percolation algorithm is presented for modeling slow displacement of a wetting fluid by a non wetting one between two rough surfaces. Short-correlated Gaussian process is used to model random rough surfaces.The algorithm is based on a network description of the fracture aperture field. The network is constructed from the identification of critical points (saddles and maxima) of the aperture field. The invasion potential is determined from examining drainage process in a flat mini-channel. A direct comparison between numerical prediction and experimental visualizations on an identical geometry has been performed for one realization of an artificial fracture with a moderate fractional contact area of about 0.3. A good agreement is found between predictions and observations

    A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow

    Get PDF
    It was discovered in 1995 that, during the spring time, unexpectedly low concentrations of gaseous elemental mercury (GEM) occurred in the Arctic air. This was surprising for a pollutant known to have a long residence time in the atmosphere; however conditions appeared to exist in the Arctic that promoted this depletion of mercury (Hg). This phenomenon is termed atmospheric mercury depletion events (AMDEs) and its discovery has revolutionized our understanding of the cycling of Hg in Polar Regions while stimulating a significant amount of research to understand its impact to this fragile ecosystem. Shortly after the discovery was made in Canada, AMDEs were confirmed to occur throughout the Arctic, sub-Artic and Antarctic coasts. It is now known that, through a series of photochemically initiated reactions involving halogens, GEM is converted to a more reactive species and is subsequently associated to particles in the air and/or deposited to the polar environment. AMDEs are a means by which Hg is transferred from the atmosphere to the environment that was previously unknown. In this article we review Hg research taken place in Polar Regions pertaining to AMDEs, the methods used to collect Hg in different environmental media, research results of the current understanding of AMDEs from field, laboratory and modeling work, how Hg cycles around the environment after AMDEs, gaps in our current knowledge and the future impacts that AMDEs may have on polar environments. The research presented has shown that while considerable improvements in methodology to measure Hg have been made but the main limitation remains knowing the speciation of Hg in the various media. The processes that drive AMDEs and how they occur are discussed. As well, the role that the snow pack and the sea ice play in the cycling of Hg is presented. It has been found that deposition of Hg from AMDEs occurs at marine coasts and not far inland and that a fraction of the deposited Hg does not remain in the same form in the snow. Kinetic studies undertaken have demonstrated that bromine is the major oxidant depleting Hg in the atmosphere. Modeling results demonstrate that there is a significant deposition of Hg to Polar Regions as a result of AMDEs. Models have also shown that Hg is readily transported to the Arctic from source regions, at times during springtime when this environment is actively transforming Hg from the atmosphere to the snow and ice surfaces. The presence of significant amounts of methyl Hg in snow in the Arctic surrounding AMDEs is important because this species is the link between the environment and impacts to wildlife and humans. Further, much work on methylation and demethylation processes has occurred but these processes are not yet fully understood. Recent changes in the climate and sea ice cover in Polar Regions are likely to have strong effects on the cycling of Hg in this environment; however more research is needed to understand Hg processes in order to formulate meaningful predictions of these changes

    High methylmercury in Arctic and subarctic ponds is related to nutrient levels in the warming eastern Canadian Arctic

    Get PDF
    Permafrost thaw ponds are ubiquitous in the eastern Canadian Arctic, yet little information exists on their potential as sources of methylmercury (MeHg) to freshwaters. They are microbially active and conducive to methylation of inorganic mercury, and are also affected by Arctic warming. This multiyear study investigated thaw ponds in a discontinuous permafrost region in the Subarctic taiga (Kuujjuarapik-Whapmagoostui, QC) and a continuous permafrost region in the Arctic tundra (Bylot Island, NU). MeHg concentrations in thaw ponds were well above levels measured in most freshwater ecosystems in the Canadian Arctic (>0.1 ng L−1). On Bylot, ice-wedge trough ponds showed significantly higher MeHg (0.3−2.2 ng L−1) than polygonal ponds (0.1−0.3 ng L−1) or lakes (<0.1 ng L−1). High MeHg was measured in the bottom waters of Subarctic thaw ponds near Kuujjuarapik (0.1−3.1 ng L−1). High water MeHg concentrations in thaw ponds were strongly correlated with variables associated with high inputs of organic matter (DOC, a320, Fe), nutrients (TP, TN), and microbial activity (dissolved CO2 and CH4). Thawing permafrost due to Arctic warming will continue to release nutrients and organic carbon into these systems and increase ponding in some regions, likely stimulating higher water concentrations of MeHg. Greater hydrological connectivity from permafrost thawing may potentially increase transport of MeHg from thaw ponds to neighboring aquatic ecosystems

    Mercury flux to sediments of Lake Tahoe, California-Nevada

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Water, Air, & Soil Pollution 210 (2010): 399-407, doi:10.1007/s11270-009-0262-y.We report estimates of mercury (Hg) flux to the sediments of Lake Tahoe, California-Nevada: 2 and 15-20 ”g/m2/yr in preindustrial and modern sediments, respectively. These values result in a modern to preindustrial flux ratio of 7.5-10, which is similar to flux ratios recently reported for other alpine lakes in California, and greater than the value of 3 typically seen worldwide. We offer plausible hypotheses to explain the high flux ratios, including (1) proportionally less photoreduction and evasion of Hg with the onset of cultural eutrophication and (2) a combination of enhanced regional oxidation of gaseous elemental Hg and transport of the resulting reactive gaseous Hg to the surface with nightly downslope flows of air. If either of these mechanisms is correct, it could lead to local/regional solutions to lessen the impact of globally increasing anthropogenic emissions of Hg on Lake Tahoe and other alpine ecosystems.Funding was provided by Miami University, EPA-STAR, the Postdoctoral Scholar Program at Woods Hole Oceanographic Institution, and the USGS

    Mercury isotopes in a forested ecosystem: Implications for air‐surface exchange dynamics and the global mercury cycle

    Full text link
    Forests mediate the biogeochemical cycling of mercury (Hg) between the atmosphere and terrestrial ecosystems; however, there remain many gaps in our understanding of these processes. Our objectives in this study were to characterize Hg isotopic composition within forests, and use natural abundance stable Hg isotopes to track sources and reveal mechanisms underlying the cycling of Hg. We quantified the stable Hg isotopic composition of foliage, forest floor, mineral soil, precipitation, and total gaseous mercury (THg (g) ) in the atmosphere and in evasion from soil, in 10‐year‐old aspen forests at the Rhinelander FACE experiment in northeastern Wisconsin, USA. The effect of increased atmospheric CO 2 and O 3 concentrations on Hg isotopic composition was small relative to differences among forest ecosystem components. Precipitation samples had ή 202 Hg values of −0.74 to 0.06‰ and ∆ 199 Hg values of 0.16 to 0.82‰. Atmospheric THg (g) had ή 202 Hg values of 0.48 to 0.93‰ and ∆ 199 Hg values of −0.21 to −0.15‰. Uptake of THg (g) by foliage resulted in a large (−2.89‰) shift in ή 202 Hg values; foliage displayed ή 202 Hg values of −2.53 to −1.89‰ and ∆ 199 Hg values of −0.37 to −0.23‰. Forest floor samples had ή 202 Hg values of −1.88 to −1.22‰ and ∆ 199 Hg values of −0.22 to −0.14‰. Mercury isotopes distinguished geogenic sources of Hg and atmospheric derived sources of Hg in soil, and showed that precipitation Hg only accounted for ~16% of atmospheric Hg inputs. The isotopic composition of Hg evasion from the forest floor was similar to atmospheric THg (g) ; however, there were systematic differences in ή 202 Hg values and MIF of even isotopes (∆ 200 Hg and ∆ 204 Hg). Mercury evasion from the forest floor may have arisen from air‐surface exchange of atmospheric THg (g) , but was not the emission of legacy Hg from soils, nor re‐emission of wet‐deposition. This implies that there was net atmospheric THg (g) deposition to the forest soils. Furthermore, MDF of Hg isotopes during foliar uptake and air‐surface exchange of atmospheric THg (g) resulted in the release of Hg with very positive ή 202 Hg values to the atmosphere, which is key information for modeling the isotopic balance of the global mercury cycle, and may indicate a shorter residence time than previously recognized for the atmospheric mercury pool. Key points Atmospheric Hg was fractionated during uptake by foliage (‐2.89 permil ή202Hg) Hg evading from soil was from atmospheric Hg interaction with soil environment Air‐surface exchange of Hg releases Hg with positive ή202Hg to global reservoirPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97463/1/2011GB004202RRts04.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/97463/2/2011GB004202RRts05.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/97463/3/2011GB004202RRts01.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/97463/4/gbc20021.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/97463/5/2011GB004202RRts06.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/97463/6/2011GB004202RRts02.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/97463/7/2011GB004202RRts07.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/97463/8/2011GB004202RRts03.pd
    • 

    corecore