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Abstract In this paper, we present a network method for computing two-phase flows be-
tween two rough surfaces with significant contact areas. Low-capillary number drainage is
investigated here since one-phase flows have been previously investigated in other contribu-
tions. An invasion percolation algorithm is presented for modeling slow displacement of a
wetting fluid by a non wetting one between two rough surfaces. Short-correlated Gaussian
process is used to model random rough surfaces.The algorithm is based on a network descrip-
tion of the fracture aperture field. The network is constructed from the identification of critical
points (saddles and maxima) of the aperture field. The invasion potential is determined from
examining drainage process in a flat mini-channel. A direct comparison between numerical
prediction and experimental visualizations on an identical geometry has been performed for
one realization of an artificial fracture with a moderate fractional contact area of about 0.3.
A good agreement is found between predictions and observations.
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Nomenclature
g Gravity acceleration
h(x, y) Local aperture field between surfaces
h0 Local aperture of critical points
h∞ Local aperture associated with the interface whose posi-

tion along coordinate y is y∞
H = ∂2

i j h Is the local Hessian matrix of the aperture field
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Hxx &Hyy Are the Hessian principal eigenvalues
� Local width of the saddle-point throats
�cap Capillary length
�c Spacial correlation length of aperture field
L Total width of the micro-channel
�P Difference of pressure between gas and liquid
Q Volumetric flow rate per unit width
Ri , i = 1, 2 Are the principal radii of curvature of the interface
R0 Is the in-plane radius of curvature of the interface at the

origin O
y(x) Is the in-plane (i.e., (x,y) plane) position of the interface

in direction y at coordinate x
y∞ Is the in-plane (i.e., (x,y) plane) asymptotic position of the

interface in direction y
β, β ′ Local angle associated with the slope of the upper and

lower surfaces
ε Small parameter associated with the aspect ratio of the

critical points: local aperture divided by width
ε′ Small parameter associated with the surface slopes
κ Mean curvature of the interface
µ Dynamic viscosity of the fluid
ρ Fluid density
σi Is the root mean square roughness of surface i = 1, 2

σ =
√

σ 2
1 + σ 2

2 Is the composite roughness

θ, θ ′ Wettability angles

1 Introduction

Confined flows between rough surfaces are of interest to many geologic and engineering
applications Adler and Thovert (1999), Sahimi (1995), National Research council (1996),
Evans et al. (2001), Faybishenko et al. (2000), Berkowitz (2002). Not only they are of special
importance in petroleum engineering or sub-surface hydrology, as frequently mentioned, but
also they play a crucial role in tightness problem, an application that has motivated the present
study. More specifically, we refer to metallic static gaskets, which are used extensively as
primary seals in rocket engines or in the primary circuit of nuclear plants where severe con-
ditions such as extreme temperatures impose full metallic parts instead of classical elastomer
O-rings. Despite their technological importance, studies on static metallic gaskets are scarce
in the published literature, e.g., Polycarpou and Etsion (2000), Geoffroy and Prat (2004),
and references therein. In these systems, tightness is obtained by pressing two metallic sur-
faces one onto the other. However, the surfaces are rough (owing to machining). Therefore,
roughness offers possible passages for the fluid if the applied load is not sufficient to reach
the geometrical percolation threshold. Leakage tests of these systems are generally made
using Helium gas as a fluid. This is why most of the flow studies in this context focus on
single-phase flow. However, the leak in the applications involves other fluids and generally
occurs through a liquid–vapor phase change process owing to the thermodynamic conditions
on both sides of gasket. In this context, the study of two-phase flows initiated in the present
article can be seen as a necessary first step toward the more involved case of vaporization.



As in several previous studies, Mourzenko et al. (1996), Plouraboué et al. (2001) we con-
sider short-correlated rough surfaces. This class of random rough surfaces has for example
been proposed to model rough cracks, while using Gaussian-correlated aperture fields (see
Adler and Thovert 1999, and references therein). It might nevertheless be argued that many
fractures are generally self-affine over a large range of scales rather than simply short-range
correlated. However, even if cracks have been found to be long-range correlated surfaces
Brown and Scholz (1985), a typical correlation length can be found in fractures because of
the relative displacement between the two faces of the crack Plouraboué et al. (1995), Loggia
et al. (1995) or other physico-chemical mechanisms Adler and Thovert (1999), Glass et al.
(2001).

Hence, Gaussian fractures can be constructed so as to possess some important character-
istics of most real fractures, such as small local slopes and short-range correlated aperture
field. It can also be noted that studies of two-phase flows in fractures are not so numerous and
suffer from various limitations, e.g., Glass et al. (2001). The modeling is often performed by
mere adaptation of models previously elaborated in the context of porous media Vandersteen
et al. (2003), Fourar et al. (1993). Thus the specificity of fracture’s geometry is generally
omitted in those analyzes. Hence, one of the objective of this paper is precisely to take into
account the peculiar characteristics of fracture’s for short-range correlated rough surfaces.
This study is based on a representation of the aperture field as a random network of bonds.
Though pore network models have become a classic modeling approach in the related field
of transport in porous media, e.g., Sahimi (1995), Pereira et al. (1996), Blunt (2001), Blunt
et al. (2002), Sok et al. (2002) it seems that our pore network model is the first one espe-
cially designed for the study of flows between rough surfaces in contact. As pointed out by
Bryant et al. (1993), Blunt et al. (2002) most of pore network models are based on a regular
lattice, typically a square or a cubic lattice, whereas a porous medium has generally an irreg-
ular structure. Though this can be acceptable in order to get insight into complex transport
phenomena, such as two-phase flows for example, it is desirable to develop more adequate
description of the pore space in order to study real porous media Sok et al. (2002). However,
finding an equivalent skeleton to describe the network is non-trivial. In addition, even when a
network can be described so as to preserve some topological properties of the real structure,
it is not always obvious to assign accurate local transport properties to the pores and throats
forming the network. In this context, the pore network model presented in this paper has
several distinguishing features compared to standard lattices :

i. Its topology is based on the direct identification of geometrical features of random
rough fractures: the geodesics of the aperture field’s critical points. These objects play
a key role in the analysis of transport phenomena under consideration.

ii. The local conductivities associated with the bond of this random discrete network are
asymptotically exact. More precisely, the network model that is built can be formally
regarded as the asymptotic limit of the transport problems on the continuum formed
by the pore space, which is the aperture field in our case.

iii. Since our method permits a direct mapping of a complex random fracture onto a dis-
crete network, it can be used for a direct comparison between experimental measure-
ments in random fractures and theoretical prediction. This is one important contribution
of our analysis that we were not able to find elsewhere.

This geodesic based pore network has been presented by Plouraboué et al. (2006) for the
investigation of single phase flow in rough fractures. It has also permitted the study of the
hydraulic and electrical percolation conductivity exponents by Flukiger et al. (2006). The
relevance of such a network for modeling two-phase flows in random rough fracture in con-



tact is the purpose of the present study. Referring to the large number of studies devoted to
two-phase flows in porous media, it can be anticipated that the modeling of a given two-phase
flow will be more or less difficult depending on the nature of the displacement, i.e., imbibition
or drainage, and the possible unsteadiness of the flow, e.g., Fourar et al. (1993). In the present
study, we address one of the simplest displacement process, drainage, at very low capillary
numbers, i.e., the very slow immiscible displacement of a wetting fluid by a non-wetting
one. It is now well established that drainage in porous media in the quasi-static limit is well
described by invasion percolation (IP), Wilkinson and Willemsen (1983), De Gennes (1983),
Wilkinson (1984), Lenormand et al. (1988). Furthermore, recent works indicate that IP con-
cept is also useful when modeling and analyzing liquid–vapor phase change in porous media,
such as slow drying, (see for example, Prat 2002) or the slow growth of bubbles driven by heat
or mass transfer, e.g., Satik and Yortsos (1996), Satik et al. (1995), Bories and Prat (2002).
Thus it may be anticipated that a better understanding of slow drainage in fracture could
be useful for the study of these processes in rough fractures. Slow drainage in fractures has
been the subject of several studies (see Glass et al. 2001, and references therein). Amundsen
et al. (1999) studied slow drainage in two artificial fractures, one with a discrete self-affine
aperture field (model A) and the other with a continuous aperture field, which was self-affine
only below the typical size of main “valleys” (model B). It seems that these fractures were
well connected, i.e., the contact fractional area between top and bottom plates was very small
or null. Comparisons were made between experimental data and results of simulation based
on variants of standard IP model for both fractures. The displacement in model A was sim-
ulated using the standard IP model (see below) with simultaneous invasion of all sites with
lowest threshold. Because of snap-off events and redistribution of non-wetting fluid observed
in model B, a more complex variant of IP model was tested for model B. As these events
are not frequent in our case, this model does not need to be detailed here, but the interested
reader could consult Amyot and Plouraboué (2007) for a thorough investigation of capillary
snap-off in similar constrictions. Amundsen et al. found that their model led to a reasonable
agreement with the experimental data. Interestingly, it was found that the more complex IP
model for model B led to poorest results than the IP model with simultaneous invasion when
applied to model A. Thus this study suggests that the IP model should be modified depending
on the characteristics of each fracture. The standard IP model for fracture mentioned earlier
can be described as follows. The fracture aperture field is simply conceptualized as a planar
checker board of individual elements with a four-fold connectivity, the center of each element
with a known local aperture. The invasion pressure of an element is simply defined as

Pth = 2γ cos θ

h
(1)

in which h is the element local aperture, γ is the surface tension, θ the contact angle. The
algorithm essentially consists of repeating the following operation: invade the adjacent ele-
ment to the invaded region that has the lowest invasion pressure by filling it with invader
fluid. Examples of studies in which this model is used are those of Mendoza and Sudicki
(1991), Wagner et al. (1996), Vandersteen et al. (2003). It also corresponds to model A of
Amundsen et al. (1999). Glass et al. (1998) pointed out that the standard IP model does not
take into account the influence of local in-plane curvature of the fluid/fluid interface. They
develop a modified IP model taking into account the in-plane curvature with an ad hoc model
and made comparisons with experiments. They found that the local in-plane curvature can
greatly affect the phase invasion structure. In contrast with seemingly all previous studies
related to drainage in fracture, we focus on fractures with significant contact areas between
top and bottom. In the latter we call this type of fracture, “sparsely connected” (which is the



case of interest for the tightness problem evoked above). Moreover, rather than developing a
site IP model directly based on the local aperture field (as done in all previous studies), we
develop a bond IP model that is built on a bond/site network. Thus, we retrieve a feature of
porous media network models, i.e., a representation of the pore (here the aperture) space in
terms of bond (throat)/site (pore) network. This network model is determined from the frac-
ture surfaces geometry. It has common features with the equivalent network introduced by
Weinrib (1982) for studying the percolation threshold of a class of two-dimensional contin-
uum systems. As in many pore network models of quasi-static drainage (e.g., Blunt et al.
2002, for a review and numerous references) the non-wetting fluid must overcome the capil-
lary pressure threshold associated with a bond for the invasion to proceed. Thus, in addition to
obtain an appropriate representation for the aperture field in terms of network, this approach
relies on a correct estimation of bond capillary pressure thresholds. In this respect, the present
paper relies on a previous work, by Geoffroy et al. (2006), devoted to the study of drainage
in elementary flat straight channels. In the latter, an asymptotic analytical expressions for
the pressure difference across a meniscus traveling in the channel in the quasi-static limit is
derived. The saddle-points considered in the present study have locally a geometry similar to
one of the channel shapes considered in Geoffroy et al. (2006). Hence, the invasion criteria
previously obtained for straight channels is extended through an asymptotic analysis to sad-
dle-points of interest for the present study. In particular, we show how the capillary pressure
threshold depends on the fluid/fluid in-plane curvature. Furthermore, this study presents the
first direct comparison between local IP rules obtained on saddle-points, and experimen-
tal observations in a similar numerically generated random fracture. Finally, as indicated
previously, the present paper can be considered as a follow-up of the paper by Plouraboué
et al. (2006), which was devoted to the computation of single-phase flow in similar systems
as those considered here for the study of drainage.

As we shall see, the capillary pressure threshold depends on the fluid/fluid in-plane cur-
vature and is studied here through an asymptotic analysis.

The paper is organized as follows. We start with the network construction in Sect. 2. In
Sect. 3, we discuss the invasion of a single bond and discuss the resulting capillary pressure
threshold. In Sect. 4.1, we describe the drainage algorithm. Comparisons between simulations
and experiments will be presented in Sect. 4.3.

2 Network representation of short-correlated aperture field

2.1 Gaussian fracture

The system under study is sketched in Fig. 1. For simplicity in presentation, the top surface
(surface 2) is assumed to be flat and smooth whereas the bottom surface (surface 1) is rough.
This choice is not restrictive, and all the presented analysis can straightforwardly be trans-
posed in the case of two rough surfaces, as far as the slope of the rough surface remains small
enough. More precisely, it is possible to establish the equivalence of flow transport between
two rough surfaces of respective root mean square (r.m.s) roughness σ1 and σ2 to the flow

within an equivalent single rough surface of effective roughness σ =
√

(σ 2
1 + σ 2

2 )/2 and
a flat plane. This is called a “composite approximation” in the context of lubricated flows
Letalleur et al. (2002). It can be shown that this approximation is consistent with lubrication
approximation associated with the flow since the neglected geometrical effects coming from
the surface tortuosity are of order O(ε′2) Prat et al. (2002) where ε′ is the typical amplitude



Fig. 1 Schematic view of the rough surfaces under study

of the local slope of both rough surfaces which is generally a small parameter. One may
wonder at this stage whether it is still valid to consider the equivalent system formed by
the flat surface and the rough composite surface for two-phase flow drainage between two
rough surfaces. As shown in the Appendix, the general problem of drainage between partially
wetting rough surfaces can be analyzed in this context. The invading criteria associated with
the local curvature of the interface can be exactly mapped onto those obtained between a
rough and a plane surface. Therefore the equivalent system can be considered for drainage as
well.

In the next section we discuss the relation between the discrete network built from a
continuous description of surface roughness and lubrication approximation. The upper and
lower rough surfaces are then described through their respective surface height zi (x, y), with
i = 1 for the bottom surface and i = 2 for the top one. Since, the upper surface is flat, its
height z2 does not depend on x and y. We furthermore consider in this paper a special class
of random rough surfaces: those having short-range correlation, that is those belonging to
the Markovian family of stochastic surfaces. More precisely, we have considered a surface
roughness model which fulfills an isotropic Gaussian covariance function:

〈(
z1(r′) − z1(r′ + r)

)2
〉
r′ = σ 2

(
1 − e

−
(

r
lc

)2
)

, (2)

where r′, r are vectors in the (x, y) plane, r is the norm r = ‖r‖, and lc is the correlation
length. It shall be noted that the proposed analysis has a general scope and does not depend
on this precise choice for the short-range correlation model. Although other choices have
been used in the literature, e.g., Chrysikopoulos and Abdel-Salam (1997), Chrysikopoulos
and James (2003), the Gaussian covariance model has been chosen for a particular example
was needed. It is worth noting however that its relevance for fractures has been previously
considered Adler and Thovert (1999). In addition we note that the choice of a Gaussian
covariance function leads to a C2 continuous aperture fields, which is needed for computing
the second derivatives of aperture field (see Sect. 2.2). The local distance d(x, y) between
the two surfaces is then d(x, y) = z2 − z1(x, y). As in several previous works, e.g., Adler
and Thovert (1999), Prat et al. (2002), the local aperture field h(x, y) is then simply defined
by

h(x, y) = d(x, y) if d ≥ 0
(3)

h = 0 if d < 0.

The zones where the local distance is negative, i.e., d < 0, are zones of local contact
between the two surfaces. The presented analysis could be extended to more sophisticated
fracture’s models for which the aperture field can be influenced by elastic deformation. We



nevertheless restrict our point of view to this simple model to better control the experimental
geometry in order to test a bond IP model.

2.2 Bond network of critical points

Figure 1 shows an example of Gaussian correlated rough surface (surface 1). One can dis-
tinguish the valleys, which are the regions of minimum height, the peaks, which are the
regions of maximum height and the saddle-points, which are the points of minimum height
between two valleys. Similarly, in the absence of contact between the two solid surfaces,
one can define the critical points of the aperture field as the points where ∇h = 0. These
points correspond to the minima, saddle-points, and maxima of the aperture field. When the
two surfaces are in contact, contact areas appears at the minima of the aperture field (which
correspond to surface 1 maxima). Thus, as far as the aperture space is concerned, we are
primarily interested in the saddle-points and maxima. The saddle-points are the points where
∇h = 0 and det H < 0, where H is the Hessian matrix whose coefficients are related to the
second derivative of the aperture h:

Hi j = ∂2
i j h, (4)

where i, j = 1 refers to coordinate x and i, j = 2 refers to coordinate y. The maxima are
the points where ∇h = 0, det H > 0 and TrH = (∂2

x h + ∂2
y h) < 0. Those simple criteria

permit to identify the maxima and saddle-points. From these one can construct the network by
determining the paths from maximum to maximum through the saddle-points as detailed by
Plouraboué et al. (2006). This network is interesting to consider for fluid transport because,
most of the viscous pressure drop between two adjacent maxima is located in saddle-points.
More precisely, using an asymptotic analysis similar to the one used for the usual lubrica-
tion approach, one can find that the pressure drop is controlled by the local aperture and
the Hessian matrix eigenvalues at the saddle-point Plouraboué et al. (2004). Moreover, when
considering two-phase flow, each saddle-point is a constriction where the aperture is minimal
along the continuous path linking two maxima. Hence, the capillary pressure is maximal at
the saddle-point. Then the capillary pressure not only depends on the local aperture of the
saddle-point, but also on its geometry, i.e., on the local value of the Hessian matrix. This
point will be further considered in the next section.

The network is connected to the boundary of the fracture through the steepest ascent
paths initiated at the saddle-points located near the boundary. The random rough surface is
generated in Fourier space while prescribing a short-correlated spectral representation (see
for example Makse et al. 1996). This method gives a discrete field of heights on a Cartesian
N × N regular grid. The gradient of h as well as the Hessian matrix can be computed in
Fourier space at each grid nodes, so that the critical points can be found (cf. Plouraboué et
al. 2006, for more details). The bonds between aperture maxima are then constructed with
a steepest ascent method. An example of aperture field with its network is shown in Fig. 4.
When there is a significant contact area between the two surfaces, the network contains a
distribution of bond clusters. The fluid displacement takes place on the percolation cluster
only. To identify the bonds belonging to the percolation cluster, the depth first search method
Tarjan (1983) has been implemented. The last step consists in identifying the skeleton of the
percolation cluster.
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Fig. 2 (a) Sketch of flat straight linear channel with h0 = 1 mm, � = 25 mm. (b) Perspective view of a linear
constricted channel. (c) Top view showing the comparison between the experimental bubble invading channel
depicted in Fig. 2a with gray line and Fig. 2b in black line

3 Bond capillary pressure threshold through a single saddle-point

3.1 Theoretical discussion

As in any bond invasion percolation model on a network, an invasion threshold has to be
assigned to each bond. According to Laplace’s law, at zero capillary number limit, the cap-
illary pressure threshold associated with a perfectly wetting liquid reads

Pth = γ

(
1

R1
+ 1

R2

)
(5)

where R1 and R2 are the main radii of curvature of the non-wetting/wetting fluids interface
and γ is the interfacial surface tension. The generalization of the forthcoming analysis to
more general static wetting conditions is discussed in the appendix. The capillary pressure
threshold is associated with the narrowest passage between two maxima. In our geometry,
this corresponds to the constriction associated with the saddle-point located along the bond
joining two aperture maxima. Thus we have to determine the capillary pressure needed to
invade such constriction. Because of the gentle local slopes characterizing the rough sur-
face, it can be surmised that the principal curvature directions of the liquid–gas interface
are oriented either in a vertical plane (parallel to the z direction) and in the (x, y) plane. In
the following we will often call (x, y) variations the “in-plane” variations of the interface.
Moreover, since, the vertical dimension is always smaller than the horizontal ones, the local
interface shape along any vertical plane is a semi-circle whose radius fits the local distance
between the two solid surfaces, assuming again a perfectly wetting liquid. Hence the radius
of curvature along the z direction of the interface at a given (x, y) position is h(x, y)/2.
This radius of curvature is always smaller than the in-plane radius of curvature, so that the
pressure jump is mainly controlled by this term. Hence the first radius of curvature R1 of
relation (5) is the local half-distance between the two surfaces, i.e., R1 = h(x, y)/2.

Nevertheless one needs to go beyond the first-order estimate (1) for the capillary pressure
jump. We are interested in finding invasion criteria which could distinguish between the
invasion of two saddle-points having the same local aperture, but different shapes. Again,
because of small surface slopes, the liquid/gas interface within the saddle-point constriction
remains close to the saddle-point central position as illustrated in Figs. 2a and c. The shape
of the interface that is found for those constricted channels is very similar to those obtained
in a straight channel by Geoffroy et al. (2006) (such as the one depicted in Fig. 2a) having
the same cross-section as the saddle-point cross-section.

This qualitative view is more precisely argued in the following. Quasi-static drainage in
narrow straight channels has been investigated by Geoffroy et al. (2006) in both linearly and
quadratically varying channel cross-sections. These narrow channels have small aspect ratio.



This means that the ratio between the maximum gap h0 at the saddle-point and the channel’s
width �, is a small parameter ε = h0/� � 1. We would like to discuss here how the results
that have been obtained by Geoffroy et al. (2006) can be transposed to find the saddle-point
percolation geometrical criteria. Let us first consider the vicinity of a saddle-point. Since,
saddle-points are critical points, they have quadratic shape in their vicinity, so that a Taylor
expansion of the aperture field near any critical point reads:

h(x, y) = h0 + 1

2
Hyy y2 + 1

2
Hxx x2 + · · · (6)

where h0 is the aperture at saddle-point O taken as origin (xO , yO) = (0, 0), and x and y
are the principal directions of the Hessian matrix at the saddle-point which are orthogonal.
The Hessian eigenvalues Hxx > 0 and Hyy < 0 have opposite sign at the saddle-point. In
the following we consider geometrical constrictions having the same order of magnitude for
the Hessian eigenvalues i.e.,

β = −Hxx/Hyy ∼ O(1). (7)

This expansion is valid for x & y positions smaller than 1/Hxx & 1/Hyy , respectively. We
now consider the problem of quasi-static position of a non wetting/wetting fluid interface in
such saddle-point. In the following we will denote y the position of the interface along the y
coordinate.

We first need to identify the important length-scales of the problem. To that purpose let
us discuss the physical ingredient of the problem. In the limit of extremely slow displace-
ment (zero capillary number limit) the pressure difference between the non-wetting and the
wetting fluid is spatially uniform. Then, the interface mean curvature is spatially uniform.
The static interface shape problem is thus a free-boundary value problem associated with
a constant mean curvature κ . The unknown value κ is fixed by the channel shape. Hence,
depending on the channel shape at the origin O , different scalings can be obtained for the
typical width of the invading air bubble Geoffroy et al. (2006). Let us discuss here the case
of quadratic channel for which the aperture has a quadratic shape (6). Far from the origin (in
a sense that will be precised below) the interface position y∞ follows a constant level-set h∞
of the channel aperture, where the mean curvature is obviously constant. Hence, from (6) the
associated far field interface position y∞(h∞, x) depends on the longitudinal coordinate x ,
through relation:

h∞ = h0 + 1

2
Hyy y2∞ + 1

2
Hxx x2 (8)

In the case of a straight channel, with no longitudinal dependence (i.e., Hxx = 0 in (8)), the
interface position far from the origin y∞ is obviously spatially constant. Let us now discuss
the relationship between the far-field constant level-set h∞ and the mean interface curvature.
First, one has to consider the transverse dimensions �, associated with the channel width at
the saddle-point. Given (6), this width is � = √−2h0/Hyy , because at a transverse distance �

the aperture gap is zero at the saddle where x = 0. One has then to realize that the geometrical
radius of curvature −1/Hyy is then much larger than �, i.e.,

−1/Hyy ∼ �/ε.

Moreover, since, from the definition (7) of β, it is an order one parameter, the same is true
for the longitudinal curvature,

1/Hxx ∼ �/ε.



In the “far-field” region where the interface reaches a constant level-set h∞ the interface
radius of curvature in the (x, y) plane are directly related to the surface radius of curvatures
1/Hxx & 1/Hyy (in the case of surfaces having small slopes, those quantities are indeed the
principal radius of curvature of the solid surfaces). This is not the case near the saddle-point,
where the in-plane interface radius of curvature at the origin R0 is directly related to the
channel width �. Since, the in-plane variations of the interface shape are much larger than �

when following the aperture isovalues, the in-plane interface curvature far from the origin is
then negligible compared to the in-plane curvature at the origin 1/R0. Hence, the total mean
curvature κ of the far-field interface position of the liquid/air interface can be approximated
by its z contribution:

κ ∼ 2/h∞
which is exactly identical to the curvature at the finger tip origin O , since the mean cur-
vature is spatially constant in the quasi-static regime. The curvature at point O is the sum
2/h0 + 1/R0 where, again, R0 is the in-plane (along the xy plane) radius of curvature at the
origin. Hence,

1/R0 ∼ 2/h0 − 2/h∞.

One thus needs to find how close h∞ is to h0 to get an estimate of how much the in-plane
curvature contribute to the mean curvature. To find this, one has to realize that even if y∞(x)

is longitudinally varying, it is nevertheless always smaller than the local channel width, as
can be observed experimentally. For the same reason that a narrow gap produce a narrow
bubble, the asymptotic far field isovalue h∞ is also closed to h0, so that

(h∞ − h0)/h0 ∼ ε2α,

where 0 < α < 1 is yet to be found. Using this relation, we deduce from (8), that

(y2∞ − βx2) ∼ ε2αh0/|Hyy | ∼ ε2α�2.

This relation then leads to a new length-scale w = εα� which is in between h0 and �, so that

(y2∞ − βx2) ∼ w2.

The same relation (h∞ − h0)/h0 ∼ ε2α gives the in-plane curvature at the origin from

1/R0 ∼ 2/h0 − 2/h∞ ∼ 2(h∞ − h0)/h0h∞ ∼ ε2α2/h0,

so that,

R0 ∼ ε−2αh0/2 ∼ �ε1−2α.

This relation shows that the in-plane interface radius of curvature at the origin O is smaller
than � as far as α < 1/2. At a distance w from the origin, the interface gently reaches
its asymptotic shape y∞ following the channel aperture isovalue h∞, so that the in-plane
curvature is well approximated by the second derivative of the transverse shape

1/R ∼ y∞/x2 ∼ 1/w ∼ 1/εα� ∼ ε1−α/h0.

Since, once more, the aperture isovalue h∞ is very close to the one at the origin h0, any
intermediate value of the aperture height h(w, y) reached by the interface at distance w from
the origin is also closed to h0. Then the scalings of the in-plane radius of curvature R and
R0 with the small parameter ε should be identical. Using the previous estimates,

R ∼ εα� ∼ R0 ∼ ε1−2α�



leads to α = 1 − 2α ⇒ α = 1/3 for a quadratic shape narrow channel. Hence, the expo-
nent α previously introduced, gives the relation between the asymptotic aperture isovalue
h(x, y) = h∞ and the aperture at the saddle-point h0, (h∞ − h0) ∼ h0ε

2/3. This asymptotic
isovalue h∞ is reached when the distance along x is large compared to w = ε1/3�. This is
precisely the “far-field” condition that we were using in the beginning of this analysis for
which we have now found a precise formulation i.e., w � x < 1/Hxx . From this, one
can also find the scaling of the in-plane radius of curvature at the origin i.e., R0 ∼ �ε1/3.
This confirms that R0 is much smaller than �, which is in turn much smaller than 1/Hxx

& 1/Hyy . This is self-consistent with our previous statement that the in-plane curvature at
the origin is much larger than in the far-field. This in-plane curvature of the interface tip is
further investigated experimentally in the next section which confirms the fact that in-plane
interface curvature in the far-field has a negligible contribution to the mean curvature. The
obtained scalings are exactly similar with those previously found by Geoffroy et al. (2006)
in the case of straight channels having quadratic shape. A more involved analyzes needs to
be performed to find the prefactors of these scaling laws. Skipping the details of this analysis
which closely follow the one presented by Geoffroy et al. (2006), it is possible to find that
the asymptotic aperture isovalue h∞ reads:

h∞ = h0

(
1 −

(
ε

3π

16

)2/3
)

+ O(ε4/3) (9)

So that the pressure drop associated with the static capillary pressure in a saddle-point is easy
to deduce:

�P = 2γ

h∞
= 2γ

h0

(
1 +

(
ε

3π

16

)2/3
)

+ O(ε4/3)

�P = 2γ

h0

(
1 +

(−h0 Hyy9π2

512

)1/3)
+ O(ε4/3) (10)

From (10), one can see that the first contribution is related to the saddle-point minimum
aperture h0, as expected. The second term on the right hand side is related to the contribution
of the in-plane radius of curvature, which only involves the transverse radius of curvature
−1/Hyy of the saddle-point. It is important to note that this relation is not a model, but the
result of an asymptotic expansion. This result has been compared to numerical and exper-
imental results in straight channels by Geoffroy et al. (2006). Moreover it should be noted
that the scaling argument that we have just developed for quadratic channels saddle-points
could be equally applied for linear channels. More precisely the transposition of the results
obtained by Geoffroy et al. (2006) for linear channel could equivalently be applied to locally
linear constricted channels in both longitudinal and transverse direction and leads to a differ-
ent exponent α. Let us now discuss some experimental validation of this local analysis in the
case of a constricted channel.

3.2 Experimental analysis

As illustrated in Fig. 2 we considered a narrow channel of maximum gap h0 and total width
2l. The main point of this section is to show that the scaling argument developed in the pre-
vious section is confirmed by experimental observation. This argument claims that straight
channel and constricted channel having equally small in-plane variations along the x and y
directions leads to equivalent problems for quasi-static drainage. In other words, the



longitudinal variations of the channel aperture h(x, y) do not influence the interface quasi-
static mean curvature so that the capillary pressure needed to invade the channel is controlled
by the saddle-point width only, that is to say the transverse curvature only. To test this assump-
tion we have compared the interface obtained in straight channels by Geoffroy et al. (2006)
with a constricted channel with similar geometrical properties. More precisely, we have
designed a channel for which the aspect ratio at the saddle-point is exactly the same as in the
straight channel. Moreover, the x and y slopes of the aperture h(x, y) have been chosen small
and equal to ε = 0.05. In order to better observe the asymptotic limit where the interface
reach the h∞ isovalue, we have chosen linear transverse and longitudinal variations of the
aperture h(x, y). In this case, when the interface aperture reach h∞, the interface shape tends
to a straight-line. This linear behavior of the interface shape is thus much easier to detect
experimentally than the parabolic interface shape which would have arisen in the quadratic
saddle-point analyzed in the previous section. This is why we have preferred here to test
the analysis presented in the previous section in a linear channel whose variation around the
“saddle-point” O is h(x, y) = h0(1 + ε(x − y)).

To this end a mini-channel has been built in two steps. First, a polymeric material has
been carved with a digitally controlled ISEL CPM4040 milling machine. The mini-channel
depth function h(x, y) has been very finely discretized, so as to permit an optimal use of
the machining precision, which is equal to 10 microns in every (x; y; z) directions. The
mini-channel maximum depth h0 has been chosen equal to h0 = 1 mm. The maximum
depth h0 is only slightly smaller than the capillary length lcap = √

γ /ρ obtained from bal-
ancing surface tension γ with gravity acceleration g acting on the fluid volume density ρ

(lcap ≈ 1.5 mm for the oil used in our experiments). Nevertheless gravity forces influence
should remain small in the presented experimental results, since every experiment has been
carefully aligned along the horizontal plane. In a second step, a Plexiglas plate of 1 cm thick
is fixed on top of the carved material. Leakage is prevented thanks to a silicon paste disposed
on lateral grooves machined along the carved channel. The top plate has been fixed with
equally spaced and controlled clamping screws. Then, the entrance side of the channel is
open to ambient pressure, while the exit side is connected to a screw-driven pump through a
Plexiglas chamber. Experiments were carried out by slowly pumping out a perfectly wetting
silicon oil (γ = 20.7 × 10−3 N/m) that perfectly wets the material of both top and bottom
surfaces. A constant temperature of 22±1◦C has been maintained during all the experiments.

The experiments were recorded with a CCD camera set above the channel. One can refer
to Geoffroy et al. (2006) for further details on the experimental aspects. The channel geom-
etry is illustrated in Fig. 2b. Two distinct parts can be distinguished. First, a straight channel
with triangular cross-section and secondly a constricted linear section. The straight channel
half-width is �1 = 20 mm and its length is 14 cm. Thus its slope is ε = h0/�1 = 0.05. The
constriction is obtained by linear variation of the channel half width and maximum depth
so as to keep the same slope in each cross-section. This variation occurs over a distance of
90 mm from the end of the straight channel. At the “saddle-point”, the channel half-width is
thus �2 = 5 mm and the maximum depth is 0.25 mm. The geometry of the divergent after
the saddle-point is symmetrical with the convergent. Figure 2c shows the superposition of
liquid–air interface at the constricted saddle-point (black continuous curve) during drainage
with the one traveling within the straight channel (gray curve). The latter has been rescaled
by the ratio �2/�1 between the straight channel width and the saddle-point cross-section
width. This rescaling is precisely the one obtained by Geoffroy et al. (2006), which shows
that the dimensionless interface location (the ratio between the interface position and the
local channel width) depends only on the aspect ratio ε, which is kept constant all along
the channel here. As can be observed, the superposition shown in Fig. 2c gives a perfect



matching between the respective in-plane radius of curvature R0 of the interface at the bub-
ble tip O . Since, the mean curvature is constant in both cases, this indicates that the capillary
pressure is also identical in a straight channel and in a longitudinally slowly varying chan-
nel. The interfaces obviously differ far from the bubble tip O because they reach isovalue of
the aperture field. The far field interface position y∞ is constant for a straight channel. On the
contrary it varies linearly in the linear constricted channel and reaches a straight line whose
angle with the longitudinal direction is proportional to the aspect ratio ε. In both cases, one
can clearly distinguish that each asymptotic far field positions associated with isovalue h∞ is
reached on a spatial scale which is much smaller than the channel width �. This observation
is consistent with the finding of Geoffroy et al. (2006), as well as the analysis of the previous
section for which the spatial scale associated with asymptotic convergence has been found
equal to w = ε1/3� which is much smaller than �.

4 Invasion percolation between rough surfaces

4.1 Quasi-static drainage modeling

Implementing IP algorithm in the present context is now straightforward. Initially, all bonds
are occupied by the wetting fluid. The non-wetting fluid can invade the network from one of
its four sides, say the bottom side. The algorithm then consists of repeating two steps:

1. Identify the bond adjacent to the invaded region that has the lowest invasion threshold
2. Invade the identified bond and fill all bonds connected to the adjacent maxima up to the

saddle-points.
Two additional rules have been added to the previous ones,

3. bonds not belonging to the percolation cluster skeleton cannot be invaded
4. bonds belonging to trapped wetting fluid bond cluster cannot be invaded

The invasion stops when the non-wetting fluid forms a spanning cluster from bottom to top
sides. Periodic invasion conditions are imposed on lateral sides of network. In the next sec-
tion results of drainage simulation based on this algorithm are compared to experimental
visualizations.

4.2 Drainage experiments between micro-machined rough surfaces

In order to check the IP network model, a numerically generated “random” rough surface
has been constructed using the same digitally controlled milling machine. The statistical
properties of the surface are isotropic and short-correlated, as previously discussed in Sect.
2. The surface discretization is 2π points per correlation length lc while approximately 80
correlation lengths have been taken along each direction. The surface dimensions were set
to 120 × 120 mm with a vertical r.m.s roughness equal to σ = 1 mm while the correlation
length is equal to lc = 1.2 mm. Then the aperture field is truncated so that every height larger
than hmax = 0.55 mm are set to 0.55 mm.

This generates plateaus corresponding to the contact areas. This surface is carved with
the digitally controlled milling machine. A transparent flat Plexiglas plate one centimeter
thick is fixed on top of the carved material using the same protocol described in previous
section for the mini-channel. The channel entrance is open to ambient pressure, while the
exit side is connected to a screw-driven pump through a Plexiglas chamber. Experiments
are carried out by slowly pumping out a silicon oil that perfectly wets the material of both



Fig. 3 (a) Schematic view of slow drainage experiment within the artificial fracture. (b) Top view of the
milling machined artificial fracture

top and bottom surfaces. A constant temperature of 22 ± 1◦C is maintained during all the
experiments. The controlled flow rate imposed in the experiment is Q = 3.33 × 10−10 m3/s.
Thus an average value of capillary number can be estimated as Ca = Qµ/d Lγ where µ is
the silicon oil dynamic viscosity (µ = 0.068 Pa s), d is the distance between the mean planes
of both surfaces (d = 450 µm) and L is the artificial fracture width (L = 0.12 m). This
leads to Ca = 2 · 10−4 in agreement with the assumption of a quasi-static displacement. The
experiments are recorded with a CCD camera set above the artificial fracture. Figure 3 shows
a sketch of the experimental set-up as well as an image of the milling machined fracture.
There are some unavoidable experimental uncertainties concerning the exact reproduction
of the numerical aperture field coming from the machining precision, elastic deformations
of the materials, the Plexiglas parallelism, etc. The experimental uncertainty coming from
micro-machining is easy to estimate and is close to 30 microns. The other uncertainties com-
ing from the possible elastic deformation of the top Plexiglas plate which is screwed over
the polymeric material are more difficult to evaluate. A reasonable guess of the discrepancy
between the experimental vertical aperture field and its numerical model should not be less
than a hundred microns.

4.3 Comparison between experiments and IP computation

The drainage simulation has been performed using the IP algorithm described in Sect. 4.1.
The network is constructed using the same numerically generated aperture field as for the
experimental model described in the previous section for which the liquid–gas interface is
geometrically controlled by the capillary pressure. As a matter of fact, the interface position
shown in Fig. 4 closely follows the “pore network” obtained from following the geodesic
network linking the critical points described in Sect. 2. The interface position associated with
constricted regions in saddle-points acts as a capillary barrier for the liquid–gas interface.

The invasion percolation model can be tested on a broader scale. Figure 5a, c, e shows the
experimental invading patterns obtained at different times with Fig. 3 set up, and using the
artificial micro-machined rough surface described in Sect. 4. Fig. 5b, d, f shows the numerical
prediction using percolation threshold (10) and the algorithm detailed in Sect. 4.1. The com-
parison between the Fig. 5a, c, e and b, d, f shows a good agreement between the experimental
observation and the numerical computations. There are nevertheless differences, that can, for
example, be observed between Fig. 5e and f. Such difference is nevertheless self-consistent
with the previously mentioned mismatch between the experimental aperture field and the
numerical model. Let us first comment about the impact of the in-plane curvature expression



Fig. 4 Each figure displays the superposition of three objects. The first one is the aperture level set computed
from randomly generated short-correlated surfaces from which one can distinguish the aperture maxima (with
circles) and saddle-points (with crosses). Dark regions are contact regions between the upper and the lower
surface. The second object (in yellow) is the geodesic network linking maxima through their associated sad-
dle-point. The third object is the experimental liquid–air interface, visualized at different times for which clear
regions are the gas phase. As time is increased the air is invading the pore space through “largest” pores. The
two arrows displayed in (a) show the saddle-points from which invasion occurs in (b). Same conventions from
(c) to (d), and from (e) to (f) where the last arrow indicates the next saddle to be invaded

obtained in (10) as compare to the simple model (1). To this end, simulations using an invasion
criterion that only takes into account the local aperture of saddle-point �Pth = 2γ /h0 have
been compared to simulations using (10) for several numerical random realizations, using
the same contact surfaces equal to approximately 0.3 No significant difference was observed.
Then we explored numerically systems closer to the percolation threshold considering again
several realizations. The geometrical percolation threshold for the system under study has
been studied by Mourzenko et al. (1996) and is close to 0.5 for large systems. An interesting
observation came out from these simulations. Occasionally, i.e., for some but not all realiza-
tions, the invasion path was different when the in-plane curvature was neglected. This can be
understood as follows. Far from the percolation threshold, numerous saddle-points are avail-
able for the invasion and the hierarchy of available saddle-points at the liquid/gas interface is
unambiguously given by the first-order capillary pressure threshold approximation. Closer to
the percolation threshold, the list of open saddle-points on the percolation cluster skeleton is
far more limited. It becomes then possible that the invading fluid has to choose only between



two saddle-points to continue the invasion. When it happens that these two saddle-points
have practically the same aperture, the in-plane curvature correction contribution has a sig-
nificant impact on the choice of the saddle-point to be invaded, resulting in a significantly
different invasion path depending on the consideration or not of the in-plane curvature cor-
rection. Thus, it can be concluded that, for certain realizations, the in-plane curvature at the
saddle-point can have a significant impact on the invasion criteria, when the saddle-point con-
strictions are tight, so that the contact area is close to 0.5. Another interesting point concerns
the perfectly wetting conditions that have been assumed all along this paper. The analysis
presented here is easy to adapt to more general wettability conditions. Suppose the contact
angles are θ on top surface and θ ′ on bottom surface. Then as ∇h = 0 at the saddle-point,
i.e., the surfaces are locally parallel, a simple calculation shows that the in-depth curvature
radius at the saddle-point can be found equal to h/(cos θ + cos θ ′). Thus the invasion criteria
(10) can be extended to the leading order to heterogeneous wetting conditions from simply
replacing the constant cos θ on the right hand side by (cos θ + cos θ ′)/2. The appendix ana-
lyzes more deeply the equivalence of this criteria for describing drainage between two rough
surfaces, between one rough surface and a flat plane.

5 Conclusion

In this paper, we studied quasi-static drainage in a system formed by two short-correlated
rough surfaces. We showed that this displacement process in Gaussian fracture can be mod-
eled using a standard IP algorithm on a random network. The random network is constructed
from the identification of the fracture aperture field critical points (maxima and saddle-
points). In particular, the network has a variable coordination number and can be viewed as
the topological skeleton of the aperture field. This network is designed for systems with sig-
nificant contact areas so as to have well defined constrictions (at the saddle-points) between
valleys. As presented in details in (Plouraboué et al. 2006) and (Flukiger et al. 2006), this
bond network is also very well adapted to the determination of the fracture permeability
and conductivity. Thus it can be surmised that this network representation will be useful for
modeling other transport processes between short correlated rough surfaces.
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Appendix

In this appendix we analyze the static shape of a interface pined between two rough surfaces
in two dimensions having heterogeneous contact angles. From this static shape we deduce
the radius of curvature of the interface as a function of the local slopes and contact angles.

We denote β, β ′ the upper and lower angle associated with the surface slopes
tan β = d Z2/dx and tan β ′ = −d Z1/dx . θ, θ ′ are the respective contact angles on up-
per and lower surface as depicted on Fig. 6.

Let us now deduce the radius of curvature. We first establish different intermediate equal-
ities.

From Fig. 7a, on can see that ̂B DC = 2γ ′, where B and C are the contact line points of
the interface on the upper and lower surface, and D is the center of the radius of curvature.



Fig. 5 (a, c, e) Displacement patterns observed during the slow drainage experiment within artificial fracture.
Air (white) displaces wetting oil (gray). (b, d, f) Simulated displacement patterns using the IP model on the
aperture saddle-point network

From Fig. 7a, one can also deduce a simple equality between all the angles:

2γ ′ + θ + θ ′ + β + β ′ = π (11)

since furthermore, sin γ ′ = BC/2R, then

sin

(
θ + θ ′ + β + β ′

2

)
= BC

2R
(12)



Fig. 6 Sketch of a pinned
interface between two rough
surfaces having local splopes
β, β ′ and contact angles θ, θ ′

Fig. 7 Different mathematical cases considered in the appendix associated with the physical situation depicted
in Fig. 6

The aperture between the two rough surface is given by B ′′C ′′ (cf. Fig. 7c) that we will denote
h = B ′′C ′′ in the following. To compute this local aperture h, let us first consider the angle
γ = ̂C MC ′′ (clockwise oriented) of the BC cord with vertical direction (cf. Fig. 7b). Two
cases need then to be considered:

i. γ > 0,
ii. γ < 0,

In the first case (i), Fig. 7b has to be considered, for which the following identity applies :

γ + γ ′ + θ + β = π/2 (13)

so that with (11), this leads to:

γ = 1

2

(
β ′ − β + θ ′ − θ

)
(14)



Then, using notation of Fig. 7b,

cos γ = B ′C ′

BC
= h + B ′ B ′′ − C ′C ′′

BC
(15)

But realizing that:

̂C ′′CC ′ = β ′ ⇒ tan β ′ = C ′C ′′
CC ′

̂C MC ′ = γ ⇒ sin γ = C ′C
BC/2

}
C ′C ′′ = tan β ′ sin γ

BC

2
(16)

equivalently for B ′ B ′′ Eqs. 15 and 16 lead to

BC = h

cos γ + (− tan β + tan β ′) sin γ
(17)

In the second case (ii) Fig. 7d should be considered so that one can realize that, then

− γ + γ ′ + θ ′ + β ′ = π/2 (18)

so that from (11), this leads to:

γ = 1

2

(
β ′ − β + θ ′ − θ

)
(19)

Following the same steps, one realizes that in this case

cos γ = B ′C ′

BC
= h − B ′ B ′′ + C ′C ′′

BC
(20)

as well as,

̂C ′′CC ′ = β ′ ⇒ tan β ′ = C ′C ′′
CC ′

̂C MC ′ = γ ⇒ − sin γ = C ′C
BC/2

}
C ′C ′′ = − tan β ′ sin γ

BC

2
(21)

Equations 20 and 21 lead to

BC = h

cos γ + (− tan β + tan β ′) sin γ
(22)

Hence, in both cases (i) and (ii) one has:

γ = 1

2

(
β ′ − β + θ ′ − θ

)
(23)

and,

BC = h

cos γ + (− tan β + tan β ′) sin γ
(24)

Using (12), (24), and (23) then one gets finally the expression for the local radius of curvature
R of the interface:

R = h

2

1

cos β+β ′+θ+θ ′
2

[
cos β ′−β+θ ′−θ

2 + (− tan β + tan β ′) sin β ′−β+θ ′−θ
2

] (25)

It is interesting to look at the approximation of this radius of curvature as a function of
the local slopes β and β ′ when they are both small, as usually considered in the context of
the lubrication approximation. In this case one finds that:

R = h

(
1

cos θ + cos θ ′ − (β sin θ ′ + β ′ sin θ)

(cos θ + cos θ ′)2

)
+ O(β2, β ′2) (26)



This last result shows that, to the leading order, the radius of curvature only depends on
the contact angles θ and θ ′. The first small slope correction displays a linear dependence
with the surface slopes β and β ′. In the case of symmetrical wettability, one can see that this
correction involves the sum of the angles. Hence, if one consider the equivalent situation of
a single rough surface having local slope β + β ′ resulting from taking the height difference
between Z2 and Z1 surfaces and a flat surface, the radius of curvature will be exactly iden-
tical to the small slope approximation found in (26). Hence in both situation the invasion
capillary pressure is the same, and thus the drainage problem is equivalent. In the case of
heterogeneous wettability, one can still find a equivalence between the rough/flat case with
the rough/rough situation from properly weighting the surface height Z2 and Z1 with wetting
angles sin θ ′ and sin θ . Moreover, since the invasion criteria is written on critical points for
which the local slope is zero, in this case β + β ′ = 0 and the invasion criteria only depends
on the first term of expression (26) from neglecting O(β2, β ′2) terms self-consistently with
lubrication approximation.
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