49 research outputs found

    The apoptotic response in HCT116BAX-/- cancer cells becomes rapidly saturated with increasing expression of a GFP-BAX fusion protein

    Get PDF
    Abstract Background Many chemotherapeutic agents promote tumor cell death by activating the intrinsic pathway of apoptosis. Intrinsic apoptosis involves permeabilization of the mitochondrial outer membrane and the release of cytochrome c, a process that is controlled by proteins of the BCL2 gene family. Chemoresistance is often associated with abnormalities in concentrations of BCL2 family proteins. Although stoichiometirc interactions between anti-apoptotic and BH3-only BCL2 family proteins have been well documented as affecting cell death, the association between changes in BAX concentration and intrinsic apoptosis are poorly understood. Methods Exogenous GFP-murine Bax fusion constructs were transfected into BAX-deficient HCT116 cells. To titrate the expression of the fusion protein, GFP-BAX was cloned into a tetracycline sensitive expression cassette and cotransfected with a plasmid expressing the rtTA transcription factor into HCT116 BAX-/- cells. Linear expression of the fusion gene was induced with doxycycline and monitored by quantitative PCR and immunoblotting. Cell death was assayed by DAPI staining cells after exposure to indomethacin, and scoring nuclei for condensed chromatin and fragmented nuclei. Results HCT116 BAX-/- cells were resistant to indomethacin, but susceptibility could be recovered in cells expressing a GFP-BAX fusion protein. Titration of GFP-BAX expression revealed that the concentration of BAX required to induce a saturating apoptosis response from baseline, was rapidly achieved. Increased levels of GFP-BAX were unable to stimulate higher levels of cell death. Examination of GFP-BAX distribution before and after indomethacin treatment indicated that BAX protein did not form aggregates when present at sub-lethal concentrations. Conclusion Within the limitations of this experimental system, BAX-dependent apoptosis in HCT116 cells exhibits an all-or-none response depending on the level of BAX protein present. The lack of BAX aggregation at sub-saturation levels suggests that the translocation step of BAX activation may be impaired

    Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient

    Get PDF
    The natural abundance of stable 15N isotopes in soils and plants is potentially a simple tool to assess ecosystem N dynamics. Several open questions remain, however, in particular regarding the mechanisms driving the variability of foliar δ15N values of non-N2 fixing plants within and across ecosystems. The goal of the work presented here was therefore to: (1) characterize the relationship between soil net mineralization and variability of foliar Δδ15N (δ15Nleaf − δ15Nsoil) values from 20 different plant species within and across 18 grassland sites; (2) to determine in situ if a plant’s preference for NO3− or NH4+ uptake explains variability in foliar Δδ15N among different plant species within an ecosystem; and (3) test if variability in foliar Δδ15N among species or functional group is consistent across 18 grassland sites. Δδ15N values of the 20 different plant species were positively related to soil net mineralization rates across the 18 sites. We found that within a site, foliar Δδ15N values increased with the species’ NO3− to NH4+ uptake ratios. Interestingly, the slope of this relationship differed in direction from previously published studies. Finally, the variability in foliar Δδ15N values among species was not consistent across 18 grassland sites but was significantly influenced by N mineralization rates and the abundance of a particular species in a site. Our findings improve the mechanistic understanding of the commonly observed variability in foliar Δδ15N among different plant species. In particular we were able to show that within a site, foliar δ15N values nicely reflect a plant’s N source but that the direction of the relationship between NO3− to NH4+ uptake and foliar Δδ15N values is not universal. Using a large set of data, our study highlights that foliar Δδ15N values are valuable tools to assess plant N uptake patterns and to characterize the soil N cycle across different ecosystems

    A 300-year record of sedimentation in a small tilled catena in Hungary based on δ13C, δ15N, and C/N distribution

    Get PDF
    Purpose Soil erosion is one of the most serious hazards that endanger sustainable food production. Moreover, it has marked effects on soil organic carbon (SOC) with direct links to global warming. At the same time, soil organic matter (SOM) changes in composition and space could influence these processes. The aim of this study was to predict soil erosion and sedimentation volume and dynamics on a typical hilly cropland area of Hungary due to forest clearance in the early eighteenth century. Materials and methods Horizontal soil samples were taken along two parallel intensively cultivated complex convex-concave slopes from the eroded upper parts at mid-slope positions and from sedimentation in toe-slopes. Samples were measured for SOC, total nitrogen (TN) content, and SOMcompounds (δ13C, δ15N, and photometric indexes). They were compared to the horizons of an in situ non-eroded profile under continuous forest. On the depositional profile cores, soil depth prior to sedimentation was calculated by the determination of sediment thickness. Results and discussion Peaks of SOC in the sedimentation profiles indicated thicker initial profiles, while peaks in C/N ratio and δ13C distribution showed the original surface to be ~ 20 cm lower. Peaks of SOC were presumed to be the results of deposition of SOC-enriched soil from the upper slope transported by selective erosion of finer particles (silts and clays). Therefore, changes in δ13C values due to tillage and delivery would fingerprint the original surface much better under the sedimentation scenario than SOC content. Distribution of δ13C also suggests that the main sedimentation phase occurred immediately after forest clearance and before the start of intense cultivation with maize. Conclusions This highlights the role of relief in sheet erosion intensity compared to intensive cultivation. Patterns of δ13C indicate the original soil surface, even in profiles deposited as sediment centuries ago. The δ13C and C/N decrease in buried in situ profiles had the same tendency as recent forest soil, indicating constant SOM quality distribution after burial. Accordingly, microbiological activity, root uptake, and metabolism have not been effective enough to modify initial soil properties

    Applications of microarray technology in breast cancer research

    Get PDF
    Microarrays provide a versatile platform for utilizing information from the Human Genome Project to benefit human health. This article reviews the ways in which microarray technology may be used in breast cancer research. Its diverse applications include monitoring chromosome gains and losses, tumour classification, drug discovery and development, DNA resequencing, mutation detection and investigating the mechanism of tumour development

    Nitrogen and Carbon Isotopic Dynamics of Subarctic Soils and Plants in Southern Yukon Territory and its Implications for Paleoecological and Paleodietary Studies

    Get PDF
    We examine here the carbon and nitrogen isotopic compositions of bulk soils (8 topsoil and 7 subsoils, including two soil profiles) and five different plant parts of 79 C3 plants from two main functional groups: herbs and shrubs/subshrubs, from 18 different locations in grasslands of southern Yukon Territory, Canada (eastern shoreline of Kluane Lake and Whitehorse area). The Kluane Lake region in particular has been identified previously as an analogue for Late Pleistocene eastern Beringia. All topsoils have higher average total nitrogen δ15N and organic carbon δ13C than plants from the same sites with a positive shift occurring with depth in two soil profiles analyzed. All plants analyzed have an average whole plant δ13C of −27.5 ± 1.2 ‰ and foliar δ13C of ±28.0 ± 1.3 ‰, and average whole plant δ15N of −0.3 ± 2.2 ‰ and foliar δ15N of ±0.6 ± 2.7 ‰. Plants analyzed here showed relatively smaller variability in δ13C than δ15N. Their average δ13C after suitable corrections for the Suess effect should be suitable as baseline for interpreting diets of Late Pleistocene herbivores that lived in eastern Beringia. Water availability, nitrogen availability, spacial differences and intra-plant variability are important controls on δ15N of herbaceous plants in the study area. The wider range of δ15N, the more numerous factors that affect nitrogen isotopic composition and their likely differences in the past, however, limit use of the modern N isotopic baseline for vegetation in paleodietary models for such ecosystems. That said, the positive correlation between foliar δ15N and N content shown for the modern plants could support use of plant δ15N as an index for plant N content and therefore forage quality. The modern N isotopic baseline cannot be applied directly to the past, but it is prerequisite to future efforts to detect shifts in N cycling and forage quality since the Late Pleistocene through comparison with fossil plants from the same region

    Measurement of the mass difference m(D-s(+))-m(D+) at CDF II

    Get PDF
    We present a measurement of the mass difference m(D-s(+))-m(D+), where both the D-s(+) and D+ are reconstructed in the phipi(+) decay channel. This measurement uses 11.6 pb(-1) of data collected by CDF II using the new displaced-track trigger. The mass difference is found to be m(D-s(+))-m(D+)=99.41+/-0.38(stat)+/-0.21(syst) MeV/c(2)
    corecore