155 research outputs found

    Current Studies in Japanese Law

    Get PDF
    Over the past fifteen years there has been a remarkable growth in the study of Japanese law in the United States. The foundation was laid during the late 1950\u27s when the Harvard-Michigan-Stanford program brought together Japanese legal specialists and their American counterparts for study and research. At the end of this program a major conference was held, and the resulting publication, Law in Japan, continues to serve as a point of departure in descriptive studies of Japanese law. During the 1960\u27s interest in Japan continued to develop among law faculty members, but an even more important development was the increase in the number of students coming to the law school who already had some Japanese language and area training. With these students as a nucleus, a few law schools have begun to offer work in Japanese law. Some of these courses have been taught by visiting Japanese professors, and a few are taught regularly by Americans trained in Japanese law. At the same time, the Japanese legal system has been studied by many non-lawyers, such as political scientists, sociologists, and anthropologists. Constitutional law, family law, and criminal law have been analyzed as political and social phenomena in studies which have gone beyond legal rules to origins and practices. The four papers in this volume represent these various developments. One is by a visiting scholar, two were written by students in a course dealing with Japanese law, and one is part of a doctoral thesis in anthropology.https://repository.law.umich.edu/books/1108/thumbnail.jp

    "Safe" Coulomb Excitation of 30Mg

    Full text link
    We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient gamma spectrometer MINIBALL. Using 30Mg ions accelerated to an energy of 2.25 MeV/u together with a thin nat-Ni target, Coulomb excitation of the first excited 2+ states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative de-excitation gamma ray yields the B(E2; 0+ -> 2+) value of 30Mg was determined to be 241(31) e2fm4. Our result is lower than values obtained at projectile fragmentation facilities using the intermediate-energy Coulomb excitation method, and confirms the theoretical conjecture that the neutron-rich magnesium isotope 30Mg lies still outside the ``island of inversion''

    REX-ISOLDE: post-accelerated radioactive BEAMS at CERN-ISOLDE

    Get PDF
    The ISOLDE RIB-facility at CERN has today been producing a vast range of radioactive beams since more than 30 years. The low-energy beams of ISOLDE will be complemented by a post-accelerator, REX-ISOLDE, currently being assembled. In order to convert the pseudo-DC, singly-charged beam from the ISOLDE mass separators into a cooled and bunched beam at higher charge states a novel scheme of trapping, cooling and charge-state breeding has been devised, using a linear Penning trap and an Electron Beam Ion Source (EBIS). This allows for subsequent acceleration by a short, cost-effective LINAC consisting of an RFQ, an IH-structure and three seven-gap resonators, reaching 0.8 - 2.2 MeV/u. The installation of REX-ISOLDE is well underway and the first post-accelerated radioactive beams are expected to be obtained during late 2000

    The Spread of Inequality

    Get PDF
    The causes of socioeconomic inequality have been debated since the time of Plato. Many reasons for the development of stratification have been proposed, from the need for hierarchical control over large-scale irrigation systems to the accumulation of small differences in wealth over time via inheritance processes. However, none of these explains how unequal societies came to completely displace egalitarian cultural norms over time. Our study models demographic consequences associated with the unequal distribution of resources in stratified societies. Agent-based simulation results show that in constant environments, unequal access to resources can be demographically destabilizing, resulting in the outward migration and spread of such societies even when population size is relatively small. In variable environments, stratified societies spread more and are also better able to survive resource shortages by sequestering mortality in the lower classes. The predictions of our simulation are provided modest support by a range of existing empirical studies. In short, the fact that stratified societies today vastly outnumber egalitarian societies may not be due to the transformation of egalitarian norms and structures, but may instead reflect the more rapid migration of stratified societies and consequent conquest or displacement of egalitarian societies over time

    Epigenome-wide meta-analysis of blood DNA methylation and its association with subcortical volumes:findings from the ENIGMA Epigenetics Working Group

    Get PDF
    DNA methylation, which is modulated by both genetic factors and environmental exposures, may offer a unique opportunity to discover novel biomarkers of disease-related brain phenotypes, even when measured in other tissues than brain, such as blood. A few studies of small sample sizes have revealed associations between blood DNA methylation and neuropsychopathology, however, large-scale epigenome-wide association studies (EWAS) are needed to investigate the utility of DNA methylation profiling as a peripheral marker for the brain. Here, in an analysis of eleven international cohorts, totalling 3337 individuals, we report epigenome-wide meta-analyses of blood DNA methylation with volumes of the hippocampus, thalamus and nucleus accumbens (NAcc)-three subcortical regions selected for their associations with disease and heritability and volumetric variability. Analyses of individual CpGs revealed genome-wide significant associations with hippocampal volume at two loci. No significant associations were found for analyses of thalamus and nucleus accumbens volumes. Cluster-based analyses revealed additional differentially methylated regions (DMRs) associated with hippocampal volume. DNA methylation at these loci affected expression of proximal genes involved in learning and memory, stem cell maintenance and differentiation, fatty acid metabolism and type-2 diabetes. These DNA methylation marks, their interaction with genetic variants and their impact on gene expression offer new insights into the relationship between epigenetic variation and brain structure and may provide the basis for biomarker discovery in neurodegeneration and neuropsychiatric conditions

    Genetic variants associated with longitudinal changes in brain structure across the lifespan

    Get PDF
    Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson’s disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume

    Get PDF
    The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes

    Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa

    Get PDF
    In MRI scans of patients with anorexia nervosa (AN), reductions in brain volume are often apparent. However, it is unknown whether such brain abnormalities are influenced by genetic determinants that partially overlap with those underlying AN. Here, we used a battery of methods (LD score regression, genetic risk scores, sign test, SNP effect concordance analysis, and Mendelian randomization) to investigate the genetic covariation between subcortical brain volumes and risk for AN based on summary measures retrieved from genome-wide association studies of regional brain volumes (ENIGMA consortium, n = 13,170) and genetic risk for AN (PGC-ED consortium, n = 14,477). Genetic correlations ranged from − 0.10 to 0.23 (all p > 0.05). There were some signs of an inverse concordance between greater thalamus volume and risk for AN (permuted p = 0.009, 95% CI: [0.005, 0.017]). A genetic variant in the vicinity of ZW10, a gene involved in cell division, and neurotransmitter and immune system relevant genes, in particular DRD2, was significantly associated with AN only after conditioning on its association with caudate volume (pFDR = 0.025). Another genetic variant linked to LRRC4C, important in axonal and synaptic development, reached significance after conditioning on hippocampal volume (pFDR = 0.021). In this comprehensive set of analyses and based on the largest available sample sizes to date, there was weak evidence for associations between risk for AN and risk for abnormal subcortical brain volumes at a global level (that is, common variant genetic architecture), but suggestive evidence for effects of single genetic markers. Highly powered multimodal brain- and disorder-related genome-wide studies are needed to further dissect the shared genetic influences on brain structure and risk for AN

    Genetic architecture of subcortical brain structures in 38,851 individuals

    Get PDF
    Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease
    • …
    corecore