34 research outputs found

    Toxicity assessment of tamoxifen by means of a bacterial model

    Get PDF
    Abstract A strain of Bacillus stearothermophilus was used as a model to study physical perturbations induced in the membrane by the cytostatic tamoxifen (TAM). This study was carried out using two lines of criteria: (1) bacterial growth, and temperature growth range, with determination of growth parameters as a function of TAM concentration; and (2) biophysical studies by differential scanning calorimetry (DSC) and by means of two fluorescent probes to evaluate perturbations promoted by the drug on the structural order of bacterial lipid membranes. The inhibition of growth induced by TAM, the structural bilayer disordering, and the shift in the phase transition temperature to a lower range were also determined in the presence of Ca2+, i.e., a natural membrane stabilizer, to elucidate further perturbing effects of TAM on membranes with putative implications in cell toxicity. Growth inhibition promoted by TAM is potentiated by an increase in growth temperature above the optimal range, but attenuated or relieved by the addition of 2.5 mM Ca2+ to the culture medium. Consistently, fluorescence polarization and DSC studies showed that Ca2+ ions (2.5 mM) effectively compensated for the destabilizing effects promoted by TAM in bacterial lipid membranes

    Amiodarone interactions with membrane lipids and with growth of Bacillus stearothermophilus used as a model

    Get PDF
    Abstract The thermophilic eubacterium Bacillus stearothermophilus was used as a model to study the effects of amiodarone (2-butyl-3-[3',5'diido-4'a-diethyl-aminoethoxybenzoyl]-benzofuran) in lipid organization and in bacterial growth. Effects on the structural order of lipids were assessed by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH), probing the bilayer core, and of the propionic acid derivative 3-[p-(6-phenyl)-1,3,5-hexatrienyl] phenylpropionic acid (DPH-PA), probing the outer regions of the bilayer. Amiodarone fluidizes bacterial polar lipid bilayers for temperatures below the phase transition midpoint, and orders the fluid phase of the bacterial polar lipids, as evaluated by DPH and DPH-PA. The ordering and disordering effects, which are concentration dependent, are more extensive when detected by DPH relative to DPH-PA. Growth studies performed in parallel revealed that amiodarone inhibits bacterial growth as a function of concentration. Amiodarone concentrations in the range from 1 to 2.5 ?M increased the lag time, decreased the specific growth rate, and decreased the final cell density. Furthermore, 3 ?M amiodarone completely inhibited growth. These in vivo effects of amiodarone can be related to its ability to perturb the phospholipid bilayer structure, whose integrity is essential for cell function, viability, and growth

    Lipid composition and dynamics of cell membranes of Bacillus stearothermophilus adapted to amiodarone

    Get PDF
    Bacillus stearothermophilus, a useful model to evaluate membrane interactions of lipophilic drugs, adapts to the presence of amiodarone in the growth medium. Drug concentrations in the range of 1-2 [mu]M depress growth and 3 [mu]M completely suppresses growth. Adaptation to the presence of amiodarone is reflected in lipid composition changes either in the phospholipid classes or in the acyl chain moieties. Significant changes are observed at 2 [mu]M and expressed by a decrease of phosphatidylethanolamine (relative decrease of 23.3%) and phosphatidylglycerol (17.9%) and by the increase of phosphoglycolipid (162%). The changes in phospholipid acyl chains are expressed by a decrease of straight-chain saturated fatty acids (relative decrease of 12.2%) and anteiso-acids (22%) with a parallel increase of the iso-acids (9.8%). Consequently, the ratio straight-chain/branched iso-chain fatty acids decreases from 0.38 (control cultures) to 0.30 (cultures adapted to 2 [mu]M amiodarone). The physical consequences of the lipid composition changes induced by the drug were studied by fluorescence polarization of diphenylhexatriene and diphenylhexatriene-propionic acid, and by differential scanning calorimetry. The thermotropic profiles of polar lipid dispersions of amiodarone-adapted cells are more similar to control cultures (without amiodarone) than those resulting from a direct interaction of the drug with lipids, i.e., when amiodarone was added directly to liposome suspensions. It is suggested that lipid composition changes promoted by amiodarone occur as adaptations to drug tolerance, providing the membrane with physico-chemical properties compatible with membrane function, counteracting the effects of the drug.http://www.sciencedirect.com/science/article/B6VNN-419BF60-K/1/8f2d4fae7f9c131d26230cf4123da94

    Dual imaging gold nanoplatforms for targeted radiotheranostics

    Full text link
    Gold nanoparticles (AuNPs) are interesting for the design of new cancer theranostic tools, mainly due to their biocompatibility, easy molecular vectorization, and good biological half-life. Herein, we report a gold nanoparticle platform as a bimodal imaging probe, capable of coordinating Gd3+ for Magnetic Resonance Imaging (MRI) and 67Ga3+ for Single Photon Emission Computed Tomography (SPECT) imaging. Our AuNPs carry a bombesin analogue with anity towards the gastrin releasing peptide receptor (GRPr), overexpressed in a variety of human cancer cells, namely PC3 prostate cancer cells. The potential of these multimodal imaging nanoconstructs was thoroughly investigated by the assessment of their magnetic properties, in vitro cellular uptake, biodistribution, and radiosensitisation assays. The relaxometric properties predict a potential T1-and T2-MRI application. The promising in vitro cellular uptake of 67Ga/Gd-based bombesin containing particles was confirmed through biodistribution studies in tumor bearing mice, indicating their integrity and ability to target the GRPr. Radiosensitization studies revealed the therapeutic potential of the nanoparticles. Moreover, the DOTA chelating unit moiety versatility gives a high theranostic potential through the coordination of other therapeutically interesting radiometals. Altogether, our nanoparticles are interesting nanomaterial for theranostic application and as bimodal T1-and T2-MRI / SPECT imaging probes.This research was funded by FCT (Portuguese Foundation for Science and Technology), grant numbers EXCL/QEQ-MED/0233/2012, UID/Multi/04349/2013 and PTDC/MED-QUI/29649/2017. CFGCG and MMCAC thank FCT and FEDER through the COMPETE Program for funding the CQC (UID/QUI/00313/2013 and PEst-OE/QUI/UI0313/2014). P.L-L. thanks Ministry of Economy, Industry and Competitiviy for SAF2017-83043-R, and Comunity of Madrid, FEDER and FSE for S2017/BMD-368

    Errors in protein synthesis increase the level of saturated fatty acids and affect the overall lipid profiles of yeast

    Get PDF
    The occurrence of protein synthesis errors (mistranslation) above the typical mean mistranslation level of 10-4 is mostly deleterious to yeast, zebrafish and mammal cells. Previous yeast studies have shown that mistranslation affects fitness and deregulates genes related to lipid metabolism, but there is no experimental proof that such errors alter yeast lipid profiles. We engineered yeast strains to misincorporate serine at alanine and glycine sites on a global scale and evaluated the putative effects on the lipidome. Lipids from whole cells were extracted and analysed by thin layer chromatography (TLC), liquid chromatography-mass spectrometry(LC-MS) and gas chromatography (GC). Oxidative damage, fatty acid desaturation and membrane fluidity changes were screened to identify putative alterations in lipid profiles in both logarithmic (fermentative) and post-diauxic shift (respiratory) phases. There were alterations in several lipid classes, namely lyso-phosphatidylcholine, phosphatidic acid, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, and triglyceride, and in the fatty acid profiles, namely C16:1, C16:0, C18:1 and C18:0. Overall, the relative content of lipid species with saturated FA increased in detriment of those with unsaturated fatty acids. The expression of the OLE1 mRNA was deregulated, but phospholipid fluidity changes were not observed. These data expand current knowledge of mistranslation biology and highlight its putative roles in human diseases.publishe

    Termo-adaptação molecular da membrana de Bacillus Stearothermophilus

    No full text
    Tese de doutoramento em Ciências (Bioquímica) apresentada à Faculdade de Ciências e Tecnologia da Universidade de CoimbraTêm sido propostos vários mecanismos moleculares para explicar a sobrevivência dos microorganismos termofílicos a temperaturas deletérias para os organismos mesofílicos. A membrana plasmática, em contacto directo com o exterior, constitui necessariamente um componente celular crítico para a termostabilidade celular. Alterações da composição lipídica membranar em função da temperatura de crescimento e a interacção de iões divalentes com os fosfolípidos acídicos da membrana são dois mecanismos prováveis de promover estabilização da membrana a temperaturas elevadas. No âmbito deste trabalho foram efectuados estudos bioquímicos e biofísicos da membrana de Bacillus stearothermophilus cultivado a diferentes temperaturas em meio controlo e suplementado com Ca2+. As classes de lípidos polares e as espécies de ácidos gordos, nas diferentes condições de crescimento do organismo, foram identificadas e quantificadas por técnicas cromatográficas. Os efeitos das alterações bioquímicas nas propriedades biofísicas da membrana foram estudados em bicamadas lipídicas (lipossomas multilamelares) dos extractos lipídicos totais e polares da bactéria, mediante técnicas de fluorimétricas, calorimétricas, de ressonância magnética nuclear e microscopia de luz polarizada. A permeabilidade, como exemplo duma função membranar estreitamente dependente do estado físico dos lípidos, permitiu avaliar o eventual efeito das condições de crescimento do organismo na fisiologia da membrana. Os estudos efectuados revelaram que B. stearothermophilus regula eficazmente a composição lipídica das suas membranas, quer na presença quer na ausência de Ca2+ no meio, de forma a ajustar a fluidez a um nível eventualmente compensatório do efeito da temperatura na organização dos lípidos membranares. Por outro lado, a preservação dum equilíbrio entre lípidos com diferentes geometrias moleculares, de modo a garantir a formação duma bicamada estável e flexível, deve desempenhar também um papel relevante nos mecanismos de termo-adaptação desta bactéria termofílica

    Lipid composition changes induced by tamoxifen in a bacterial model system

    Get PDF
    A putative relationship between growth impairment of Bacillus stearothermophilus by tamoxifen (TAM) and TAM-induced perturbation of the physical properties of bacterial membrane lipids has been observed. The supplementation of the growth medium with Ca2+ (a membrane stabilizer) partially relieves growth inhibition by TAM, allowing growth at TAM concentrations that fully impair growth in the basal medium. B. stearothermophilus modifies the membrane lipid composition in response to the addition of TAM to the growth medium and the response is sensitive to Ca2+. Changes in lipid composition are observed in the acyl chains and in the polar head groups of phospholipids. The physical effects of alteration in these lipids was studied by fluorescence polarization of DPH and DPH-PA. Polar lipid dispersions from TAM-adapted cells grown in a Ca2+ medium show a shift of Tm to higher temperatures and a significant increase of the structural order as compared to lipids from control cells, suggesting that TAM-induced lipid composition changes compensate for the destabilizing effects of the cytostatic on membrane organization. The polar lipids from cells grown in the basal medium containing tamoxifen are also altered, but these alterations do not promote order increase of the bilayer in spite of a deviation of Tm to higher temperatures as detected by DPH. Data indicate that B. stearothermophilus controls the membrane lipid composition in response to tamoxifen, to compensate for TAM-promoted disordering in membranes and to provide an appropriate packing of phospholipid molecules in a stable bilayer, putatively disturbed by TAM incorporation.http://www.sciencedirect.com/science/article/B6T1T-3Y6PVPV-9/1/5fd659e10f4fc0e7d0a423e4e48becd
    corecore