162 research outputs found

    Phospho-Ablated Id2 Is Growth Suppressive and Pro-Apoptotic in Proliferating Myoblasts

    Get PDF
    Inhibitor of differentiation protein-2 (Id2) is a dominant negative helix-loop-helix (HLH) protein, and a positive regulator of proliferation, in various cells. The N-terminal region of Id2 contains a consensus cdk2 phosphorylation sequence SPVR, which may be involved with the induction of apoptosis, at least in myeloid 32d.3 cells. However, the role of Id2 phosphorylation at serine 5 in skeletal muscle cells is unknown. The objective of this study was to determine if the phosphorylation of Id2 at serine 5 alters its cellular localization and its role in apoptosis in C2C12 myoblasts. Overexpression of wild type Id2 decreased MyoD protein expression, which corresponded to the increased binding of Id2 to basic HLH proteins E47 and E12. Bromodeoxyuridine incorporation was significantly decreased by the overexpression of phospho-ablated Id2 (S5A); conversely, overexpression of wild type Id2 increased cellular proliferation. The subcellular localization of Id2 and phospho-mimicking Id2 (S5D) were predominantly nuclear compared to S5A. The decreased nuclear localization of S5A corresponded to a decrease in cellular proliferation, and an increase in apoptosis. These data suggest that unphosphorylated Id2 is primarily localized in the cytosol, where it is growth suppressive and potentially pro-apoptotic. These results imply that reducing unphosphorylated Id2 may improve the pool of myoblasts available for differentiation by increasing proliferation and inhibiting apoptosis

    The Role of SIRT1 in Skeletal Muscle Function and Repair of Older Mice

    Get PDF
    Background Sirtuin 1 (SIRT1) is a NAD+ sensitive deacetylase that has been linked to longevity and has been suggested to confer beneficial effects that counter aging-associated deterioration. Muscle repair is dependent upon satellite cell function, which is reported to be reduced with aging; however, it is not known if this is linked to an aging-suppression of SIRT1. This study tested the hypothesis that Sirtuin 1 (SIRT1) overexpression would increase the extent of muscle repair and muscle function in older mice. Methods We examined satellite cell dependent repair in tibialis anterior, gastrocnemius, and soleus muscles of 13 young wild-type mice (20–30 weeks) and 49 older (80+ weeks) mice that were controls (n = 13), overexpressed SIRT1 in skeletal muscle (n = 14), and had a skeletal muscle SIRT1 knockout (n = 12) or a satellite cell SIRT1 knockout (n = 10). Acute muscle injury was induced by injection of cardiotoxin (CTX), and phosphate-buffered saline was used as a vector control. Plantarflexor muscle force and fatigue were evaluated before or 21 days after CTX injection. Satellite cell proliferation and mitochondrial function were also evaluated in undamaged muscles. Results Maximal muscle force was significantly lower in control muscles of older satellite cell knockout SIRT1 mice compared to young adult wild-type (YWT) mice (P \u3c 0.001). Mean contraction force at 40 Hz stimulation was significantly greater after recovery from CTX injury in older mice that overexpressed muscle SIRT1 than age-matched SIRT1 knockout mice (P \u3c 0.05). SIRT1 muscle knockout models (P \u3c 0.05) had greater levels of p53 (P \u3c 0.05 MKO, P \u3c 0.001 OE) in CTX-damaged tissues as compared to YWT CTX mice. SIRT1 overexpression with co-expression of p53 was associated with increased fatigue resistance and increased force potentiation during repeated contractions as compared to wild-type or SIRT1 knockout models (P \u3c 0.001). Muscle structure and mitochondrial function were not different between the groups, but proliferation of satellite cells was significantly greater in older mice with SIRT1 muscle knockout (P \u3c 0.05), but not older SIRT1 satellite cell knockout models, in vitro, although this effect was attenuated in vivo after 21 days of recovery. Conclusions The data suggest skeletal muscle structure, function, and recovery after CTX-induced injury are not significantly influenced by gain or loss of SIRT1 abundance alone in skeletal muscle; however, muscle function is impaired by ablation of SIRT1 in satellite cells. SIRT1 appears to interact with p53 to improve muscle fatigue resistance after repair from muscle injury

    Resistance Exercise Reduces Skeletal Muscle Cachexia and Improves Muscle Function in Rheumatoid Arthritis

    Get PDF
    Rheumatoid arthritis (RA) is a chronic, systemic, autoimmune, inflammatory disease associated with cachexia (reduced muscle and increased fat). Although strength-training exercise has been used in persons with RA, it is not clear if it is effective for reducing cachexia. A 46-year-old woman was studied to determine: (i) if resistance exercise could reverse cachexia by improving muscle mass, fiber cross-sectional area, and muscle function; and (2) if elevated apoptotic signaling was involved in cachexia with RA and could be reduced by resistance training. A needle biopsy was obtained from the vastus lateralis muscle of the RA subject before and after 16 weeks of resistance training. Knee extensor strength increased by 13.6% and fatigue decreased by 2.8% Muscle mass increased by 2.1%. Average muscle fiber cross-sectional area increased by 49.7%, and muscle nuclei increased slightly after strength training from 0.08 to 0.12 nuclei/μm2. In addition, there was a slight decrease (1.6%) in the number of apoptotic muscle nuclei after resistance training. This case study suggests that resistance training may be a good tool for increasing the number of nuclei per fiber area, decreasing apoptotic nuclei, and inducing fiber hypertrophy in persons with RA, thereby slowing or reversing rheumatoid cachexia

    Blunted hypertrophic response in old mouse muscle is associated with a lower satellite cell density and is not alleviated by resveratrol

    Get PDF
    Background Sarcopenia contributes to the decreased quality of life in the older person. While resistance exercise is an effective measure to increase muscle mass and strength, the hypertrophic response may be blunted in old age. Objectives To determine 1) whether hypertrophy in the m. plantaris of old mice was blunted compared to adult and 2) whether this was related to a reduced satellite cell (SC) density and 3) how resveratrol affects hypertrophy in old mice. Methods In adult (7.5 months, n = 11), old (23.5 months, n = 10) and old-resveratrol-treated (n = 10) male C57BL/6J mice, hypertrophy of the left m. plantaris was induced by denervation of its synergists. The contralateral leg served as control. Results After six weeks, overload-induced myofiber hypertrophy and IIB–IIA shift in myofiber type composition were less pronounced in old than adult mice (P = 0.03), irrespective of resveratrol treatment. Muscles from old mice had a lower SC density than adult muscles (P = 0.002). Overload-induced SC proliferation (P < 0.05) resulted in an increased SC density in old, but not adult muscles (P = 0.02), while a decrease occurred after resveratrol supplementation (P = 0.044). Id2 and myogenin protein expression levels were higher in old than adult muscles (P < 0.05). Caspase-3 was expressed more in hypertrophied than control muscles and was reduced with resveratrol (P < 0.05). Conclusion The blunted hypertrophic response in old mice was associated with a lower SC density, but there was no evidence for a lower capacity for proliferation. Resveratrol did not rescue the hypertrophic response and even reduced, rather than increased, the number of SCs in hypertrophied muscles

    Neurobiological degeneracy and affordance perception support functional intra-individual variability of inter-limb coordination during ice climbing

    Get PDF
    This study investigated the functional intra-individual movement variability of ice climbers differing in skill level to understand how icefall properties were used by participants as affordances to adapt inter-limb coordination patterns during performance. Seven expert climbers and seven beginners were observed as they climbed a 30 m icefall. Movement and positioning of the left and right hand ice tools, crampons and the climber's pelvis over the first 20 m of the climb were recorded and digitized using video footage from a camera (25 Hz) located perpendicular to the plane of the icefall. Inter-limb coordination, frequency and types of action and vertical axis pelvis displacement exhibited by each climber were analysed for the first five minutes of ascent. Participant perception of climbing affordances was assessed through: (i) calculating the ratio between exploratory movements and performed actions, and (ii), identifying, by self-confrontation interviews, the perceptual variables of environmental properties, which were significant to climbers for their actions. Data revealed that experts used a wider range of upper and lower limb coordination patterns, resulting in the emergence of different types of action and fewer exploratory movements, suggesting that effective holes in the icefall provided affordances to regulate performance. In contrast, beginners displayed lower levels of functional intra-individual variability of motor organization, due to repetitive swinging of ice tools and kicking of crampons to achieve and maintain a deep anchorage, suggesting lack of perceptual attunement and calibration to environmental properties to support climbing performanc

    Low-Volume High-Intensity Interval Training in a Gym Setting Improves Cardio-Metabolic and Psychological Health.

    Get PDF
    BACKGROUND: Within a controlled laboratory environment, high-intensity interval training (HIT) elicits similar cardiovascular and metabolic benefits as traditional moderate-intensity continuous training (MICT). It is currently unclear how HIT can be applied effectively in a real-world environment. PURPOSE: To investigate the hypothesis that 10 weeks of HIT, performed in an instructor-led, group-based gym setting, elicits improvements in aerobic capacity (VO2max), cardio-metabolic risk and psychological health which are comparable to MICT. METHODS: Ninety physically inactive volunteers (42±11 y, 27.7±4.8 kg.m-2) were randomly assigned to HIT or MICT group exercise classes. HIT consisted of repeated sprints (15-60 seconds, >90% HRmax) interspersed with periods of recovery cycling (≤25 min.session-1, 3 sessions.week-1). MICT participants performed continuous cycling (~70% HRmax, 30-45 min.session-1, 5 sessions.week-1). VO2max, markers of cardio-metabolic risk, and psychological health were assessed pre and post-intervention. RESULTS: Mean weekly training time was 55±10 (HIT) and 128±44 min (MICT) (p<0.05), with greater adherence to HIT (83±14% vs. 61±15% prescribed sessions attended, respectively; p<0.05). HIT improved VO2max, insulin sensitivity, reduced abdominal fat mass, and induced favourable changes in blood lipids (p<0.05). HIT also induced beneficial effects on health perceptions, positive and negative affect, and subjective vitality (p<0.05). No difference between HIT and MICT was seen for any of these variables. CONCLUSIONS: HIT performed in a real-world gym setting improves cardio-metabolic risk factors and psychological health in physically inactive adults. With a reduced time commitment and greater adherence than MICT, HIT offers a viable and effective exercise strategy to target the growing incidence of metabolic disease and psychological ill-being associated with physical inactivity

    β-Hydroxy-β-Methylbutyrate (HMB) Promotes Neurite Outgrowth in Neuro2a Cells

    Get PDF
    β-Hydroxy-β-methylbutyrate (HMB) has been shown to enhance cell survival, differentiation and protein turnover in muscle, mainly activating phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) and mitogen-activated protein kinases/ extracellular-signal-regulated kinases (MAPK/ERK) signaling pathways. Since these two pathways are related to neuronal survival and differentiation, in this study, we have investigated the neurotrophic effects of HMB in mouse neuroblastoma Neuro2a cells. In Neuro2a cells, HMB promotes differentiation to neurites independent from any effects on proliferation. These effects are mediated by activation of both the PI3K/Akt and the extracellular-signal-regulated kinases (ERK1/2) signaling as demonstrated by the use of specific inhibitors of these two pathways. As myocyte-enhancer factor 2 (MEF2) family of transcription factors are involved in neuronal survival and plasticity, the transcriptional activity and protein levels of MEF2 were also evaluated. HMB promoted MEF2-dependent transcriptional activity mediated by the activation of Akt and ERK1/2 pathways. Furthermore, HMB increases the expression of brain glucose transporters 1 (GLUT1) and 3 (GLUT3), and mTOR phosphorylation, which translates in a higher protein synthesis in Neuro2a cells. Furthermore, Torin1 and rapamycin effects on MEF2 transcriptional activity and HMB-dependent neurite outgrowth support that HMB acts through mTORC2. Together, these findings provide clear evidence to support an important role of HMB in neurite outgrowth.This project has been funded by Abbott Nutrition R&D

    Low-Load High Volume Resistance Exercise Stimulates Muscle Protein Synthesis More Than High-Load Low Volume Resistance Exercise in Young Men

    Get PDF
    BACKGROUND: We aimed to determine the effect of resistance exercise intensity (%1 repetition maximum-1RM) and volume on muscle protein synthesis, anabolic signaling, and myogenic gene expression. METHODOLOGY/PRINCIPAL FINDINGS: Fifteen men (21+/-1 years; BMI=24.1+/-0.8 kg/m2) performed 4 sets of unilateral leg extension exercise at different exercise loads and/or volumes: 90% of repetition maximum (1RM) until volitional failure (90FAIL), 30% 1RM work-matched to 90%FAIL (30WM), or 30% 1RM performed until volitional failure (30FAIL). Infusion of [ring-13C6] phenylalanine with biopsies was used to measure rates of mixed (MIX), myofibrillar (MYO), and sarcoplasmic (SARC) protein synthesis at rest, and 4 h and 24 h after exercise. Exercise at 30WM induced a significant increase above rest in MIX (121%) and MYO (87%) protein synthesis at 4 h post-exercise and but at 24 h in the MIX only. The increase in the rate of protein synthesis in MIX and MYO at 4 h post-exercise with 90FAIL and 30FAIL was greater than 30WM, with no difference between these conditions; however, MYO remained elevated (199%) above rest at 24 h only in 30FAIL. There was a significant increase in AktSer473 at 24h in all conditions (P=0.023) and mTORSer2448 phosphorylation at 4 h post-exercise (P=0.025). Phosporylation of Erk1/2Tyr202/204, p70S6KThr389, and 4E-BP1Thr37/46 increased significantly (P<0.05) only in the 30FAIL condition at 4 h post-exercise, whereas, 4E-BP1Thr37/46 phosphorylation was greater 24 h after exercise than at rest in both 90FAIL (237%) and 30FAIL (312%) conditions. Pax7 mRNA expression increased at 24 h post-exercise (P=0.02) regardless of condition. The mRNA expression of MyoD and myogenin were consistently elevated in the 30FAIL condition. CONCLUSIONS/SIGNIFICANCE: These results suggest that low-load high volume resistance exercise is more effective in inducing acute muscle anabolism than high-load low volume or work matched resistance exercise modes
    • …
    corecore