2 research outputs found

    Angiotensin II Promotes Skeletal Muscle Angiogenesis Induced by Volume-Dependent Aerobic Exercise Training: Effects on miRNAs-27a/b and Oxidant–Antioxidant Balance

    Get PDF
    Aerobic exercise training (ET) produces beneficial adaptations in skeletal muscles, including angiogenesis. The renin–angiotensin system (RAS) is highly involved in angiogenesis stimuli. However, the molecular mechanisms underlying capillary growth in skeletal muscle induced by aerobic ET are not completely understood. This study aimed to investigate the effects of volume-dependent aerobic ET on skeletal muscle angiogenesis involving the expression of miRNAs-27a and 27b on RAS and oxidant–antioxidant balance. Eight-week-old female Wistar rats were divided into three groups: sedentary control (SC), trained protocol 1 (P1), and trained protocol 2 (P2). P1 consisted of 60 min/day of swimming, 5×/week, for 10 weeks. P2 consisted of the same protocol as P1 until the 8th week, but in the 9th week, rats trained 2×/day, and in the 10th week, trained 3×/day. Angiogenesis and molecular analyses were performed in soleus muscle samples. Furthermore, to establish ET-induced angiogenesis through RAS, animals were treated with an AT1 receptor blocker (losartan). Aerobic ET promoted higher VO2 peak and exercise tolerance values. In contrast, miRNA-27a and -27b levels were reduced in both trained groups, compared with the SC group. This was in parallel with an increase in the ACE1/Ang II/VEGF axis, which led to a higher capillary-to-fiber ratio. Moreover, aerobic ET induced an antioxidant profile increasing skeletal muscle SOD2 and catalase gene expression, which was accompanied by high nitrite levels and reduced nitrotyrosine concentrations in the circulation. Additionally, losartan treatment partially re-established the miRNAs expression and the capillary-to-fiber ratio in the trained groups. In summary, aerobic ET promoted angiogenesis through the miRNA-27a/b–ACE1/Ang II/VEGF axis and improved the redox balance. Losartan treatment demonstrates the participation of RAS in ET-induced vascular growth. miRNAs and RAS components are promising potential targets to modulate angiogenesis for combating vascular diseases, as well as potential biomarkers to monitor training interventions and physical performance

    Characterisation of microbial attack on archaeological bone

    Get PDF
    As part of an EU funded project to investigate the factors influencing bone preservation in the archaeological record, more than 250 bones from 41 archaeological sites in five countries spanning four climatic regions were studied for diagenetic alteration. Sites were selected to cover a range of environmental conditions and archaeological contexts. Microscopic and physical (mercury intrusion porosimetry) analyses of these bones revealed that the majority (68%) had suffered microbial attack. Furthermore, significant differences were found between animal and human bone in both the state of preservation and the type of microbial attack present. These differences in preservation might result from differences in early taphonomy of the bones. © 2003 Elsevier Science Ltd. All rights reserved
    corecore