141 research outputs found
Pulsations of massive ZZ Ceti stars with carbon/oxygen and oxygen/neon cores
We explore the adiabatic pulsational properties of massive white dwarf stars
with hydrogen-rich envelopes and oxygen/neon and carbon/oxygen cores. To this
end, we compute the cooling of massive white dwarf models for both core
compositions taking into account the evolutionary history of the progenitor
stars and the chemical evolution caused by time-dependent element diffusion. In
particular, for the oxygen/neon models, we adopt the chemical profile resulting
from repeated carbon-burning shell flashes expected in very massive white dwarf
progenitors. For carbon/oxygen white dwarfs we consider the chemical profiles
resulting from phase separation upon crystallization. For both compositions we
also take into account the effects of crystallization on the oscillation
eigenmodes. We find that the pulsational properties of oxygen/neon white dwarfs
are notably different from those made of carbon/oxygen, thus making
asteroseismological techniques a promising way to distinguish between both
types of stars and, hence, to obtain valuable information about their
progenitors.Comment: 11 pages, including 11 postscript figures. Accepted for publication
in Astronomy and Astrophysic
New phase diagrams for dense carbon-oxygen mixtures and white dwarf evolution
Cool white dwarfs are reliable and independent stellar chronometers. The most
common white dwarfs have carbon-oxygen dense cores. Consequently, the cooling
ages of very cool white dwarfs sensitively depend on the adopted phase diagram
of the carbon-oxygen binary mixture. A new phase diagram of dense carbon-oxygen
mixtures appropriate for white dwarf interiors has been recently obtained using
direct molecular dynamics simulations. In this paper, we explore the
consequences of this phase diagram in the evolution of cool white dwarfs. To do
this we employ a detailed stellar evolutionary code and accurate initial white
dwarf configurations, derived from the full evolution of progenitor stars. We
use two different phase diagrams, that of Horowitz et al. (2010), which
presents an azeotrope, and the phase diagram of Segretain & Chabrier (1993),
which is of the spindle form. We computed the evolution of 0.593 and 0.878M_sun
white dwarf models during the crystallization phase, and we found that the
energy released by carbon-oxygen phase separation is smaller when the new phase
diagram of Horowitz et al. (2010) is used. This translates into time delays
that are on average a factor about 2 smaller than those obtained when the phase
diagram of Segretain & Chabrier (1993) is employed. Our results have important
implications for white dwarf cosmochronology, because the cooling ages of very
old white dwarfs are different for the two phase diagrams. This may have a
noticeable impact on the age determinations of very old globular clusters, for
which the white dwarf color-magnitude diagram provides an independent way of
estimating their age.Comment: 7 pages, 7 figures, accepted for publication in Astronomy and
Astrophysic
Evolution of a 3 \msun star from the main sequence to the ZZ Ceti stage: the role played by element diffusion
The purpose of this paper is to present new full evolutionary calculations
for DA white dwarf stars with the major aim of providing a physically sound
reference frame for exploring the pulsation properties of the resulting models
in future communications. Here, white dwarf evolution is followed in a
self-consistent way with the predictions of time dependent element diffusion
and nuclear burning. In addition, full account is taken of the evolutionary
stages prior to the white dwarf formation. In particular, we follow the
evolution of a 3 \msun model from the zero-age main sequence (the adopted
metallicity is Z=0.02) all the way from the stages of hydrogen and helium
burning in the core up to the thermally pulsing phase. After experiencing 11
thermal pulses, the model is forced to evolve towards its white dwarf
configuration by invoking strong mass loss episodes. Further evolution is
followed down to the domain of the ZZ Ceti stars on the white dwarf cooling
branch. Emphasis is placed on the evolution of the chemical abundance
distribution due to diffusion processes and the role played by hydrogen burning
during the white dwarf evolution. Furthermore, the implications of our
evolutionary models for the main quantities relevant for adiabatic pulsation
analysis are discussed. Interestingly, the shape of the Ledoux term is markedly
smoother as compared with previous detailed studies of white dwarfs. This is
translated into a different behaviour of the Brunt-Vaisala frequency.Comment: 11 pages, 11 figures, accepted for publication in MNRA
An efficient graph algorithm for dominance constraints
Dominance constraints are logical descriptions of trees that are widely used in computational linguistics. Their general satisfiability problem is known to be NP-complete. Here we identify normal dominance constraints and present an efficient graph algorithm for testing their satisfiablity in deterministic polynomial time. Previously, no polynomial time algorithm was known
SCIL - Symbolic Constraints in Integer Linear Programming
We describe SCIL. SCIL introduces symbolic constraints into branch-and-cut-and-price algorithms for integer linear programs. Symbolic constraints are known from constraint programming and contribute significantly to the expressive power, ease of use, and efficiency of constraint programs
Asteroseismological constraints on the pulsating planetary nebula nucleus (PG1159-type) RX J2117.1+3412
We present asteroseismological inferences on RX J2117.1+3412, the hottest
known pulsating PG1159 star. Our results are based on full PG1159 evolutionary
models recently presented by Miller Bertolami & Althaus (2006). We performed
extensive computations of adiabatic g-mode pulsation periods on PG1159
evolutionary models with stellar masses ranging from 0.530 to 0.741 Mo. PG1159
stellar models are extracted from the complete evolution of progenitor stars
started from the ZAMS, through the thermally pulsing AGB and born-again phases
to the domain of the PG 1159 stars. We constrained the stellar mass of RX
J2117.1+3412 by comparing the observed period spacing with the asymptotic
period spacing and with the average of the computed period spacings. We also
employed the individual observed periods to find a representative seismological
model. We derive a stellar mass of 0.56-0.57 Mo from the period spacing data
alone. In addition, we found a best-fit model representative for RX
J2117.1+3412 with an effective temperature of 163,400 K, a stellar mass of
0.565 Mo, and a surface gravity log g= 6.61. The derived stellar luminosity and
radius are log(L/Lo)= 3.36 and log(R/Ro)= -1.23, respectively, and the He-rich
envelope thickness is Menv= 0.02 Mo. We derive a seismic distance of 452 pc and
a linear size of the planetary nebula of 1.72 pc. These inferences seem to
solve the discrepancy between the RX J2117.1+3412 evolutionary timescale and
the size of the nebula. All of the seismological tools we use concur to the
conclusion that RX J2117.1+3412 must have a stellar mass of 0.565 Mo much in
agreement with recent asteroseismology studies and in clear conflict with the
predictions of spectroscopy plus evolutionary tracks.Comment: 10 pages, 6 figures, 2 tables. Accepted for publication in Astronomy
and Astrophysics. Erratum available as a separate fil
The Effects of Element Diffusion on the Pulsational Properties of Variable DA White Dwarf Stars
We explore the effects of element diffusion due to gravitational settling and
thermal and chemical diffusion on the pulsational properties of DA white
dwarfs. To this end, we employ an updated evolutionary code coupled with a
pulsational, finite difference code for computing the linear, non-radial
g-modes in the adiabatic approximation. We follow the evolution of a 0.55 \msun
white dwarf model in a self-consistent way with the evolution of chemical
abundance distribution as given by time dependent diffusion processes. Results
are compared with the standard treatment of diffusive equilibrium in the trace
element approximation. Appreciable differences are found between the two
employed treatments. We conclude that time dependent element diffusion plays an
important role in determining the whole oscillation pattern and the temporal
derivative of the periods in DAV white dwarfs. In addition, we discuss the
plausibility of the standard description employed in accounting for diffusion
in most of white dwarf asteroseismological studies.Comment: 6 pages, 5 figures, accepted for publication in MNRA
New nonadiabatic pulsation computations on full PG1159 evolutionary models: the theoretical GW Vir instability strip revisited
We reexamine the theoretical instability domain of pulsating PG1159 stars (GW
Vir variables). We performed an extensive g-mode stability analysis on PG1159
evolutionary models with stellar masses ranging from 0.530 to 0.741 Mo for
which the complete evolutionary stages of their progenitors from the ZAMS,
through the thermally pulsing AGB and born-again phases to the domain of the
PG1159 stars have been considered. We found that pulsations in PG1159 stars are
excited by the kappa-mechanism due to partial ionization of carbon and oxygen,
and that no composition gradients are needed between the surface layers and the
driving region, much in agreement with previous studies. We show, for the first
time, the existence of a red edge of the instability strip at high
luminosities. We found that all of the GW Vir stars lay within our theoretical
instability strip. Our results suggest a qualitative good agreement between the
observed and the predicted ranges of unstable periods of individual stars.
Finally, we found that generally the seismic masses (derived from the period
spacing) of GW Vir stars are somewhat different from the masses suggested by
evolutionary tracks coupled with spectroscopy. Improvements in the evolution
during the thermally pulsing AGB phase and/or during the core helium burning
stage and early AGB could help to alleviate the persisting discrepancies.Comment: 10 pages, 8 figures. To be published in Astronomy and Astrophysic
Modeling He-rich subdwarfs through the hot-flasher Scenario
We present 1D numerical simulations aimed at studying the hot-flasher
scenario for the formation of He-rich subdwarf stars. Sequences were calculated
for a wide range of metallicities and physical assumptions, such as the stellar
mass at the moment of the helium core flash. This allows us to study the two
previously proposed flavors of the hot-flasher scenario ("deep" and "shallow"
mixing cases) and to identify a third transition type. Our sequences are
calculated by solving simultaneously the mixing and burning equations within a
diffusive convection picture, and in the context of standard mixing length
theory. We are able to follow chemical evolution during deep-mixing events in
which hydrogen is burned violently, and therefore able to present a homogeneous
set of abundances for different metallicities and varieties of hot-flashers. We
extend the scope of our work by analyzing the effects of non-standard
assumptions, such as the effect of chemical gradients, extra-mixing at
convective boundaries, possible reduction in convective velocities, or the
interplay between difussion and mass loss. Particular emphasis is placed on the
predicted surface properties of the models.
We find that the hot-flasher scenario is a viable explanation for the
formation and surface properties of He-sdO stars. Our results also show that,
during the early He-core burning stage, element diffusion may produce the
transformation of (post hot-flasher) He-rich atmospheres into He-deficient
ones. If this is so, then we find that He-sdO stars should be the progenitors
of some of the hottest sdB stars.Comment: 13 pages, including 8 figures and 6 tables. Accepted for publication
in A&A. Replaced to match the final version, including a note added in proof
regarding PG 1544+48
- …