We present asteroseismological inferences on RX J2117.1+3412, the hottest
known pulsating PG1159 star. Our results are based on full PG1159 evolutionary
models recently presented by Miller Bertolami & Althaus (2006). We performed
extensive computations of adiabatic g-mode pulsation periods on PG1159
evolutionary models with stellar masses ranging from 0.530 to 0.741 Mo. PG1159
stellar models are extracted from the complete evolution of progenitor stars
started from the ZAMS, through the thermally pulsing AGB and born-again phases
to the domain of the PG 1159 stars. We constrained the stellar mass of RX
J2117.1+3412 by comparing the observed period spacing with the asymptotic
period spacing and with the average of the computed period spacings. We also
employed the individual observed periods to find a representative seismological
model. We derive a stellar mass of 0.56-0.57 Mo from the period spacing data
alone. In addition, we found a best-fit model representative for RX
J2117.1+3412 with an effective temperature of 163,400 K, a stellar mass of
0.565 Mo, and a surface gravity log g= 6.61. The derived stellar luminosity and
radius are log(L/Lo)= 3.36 and log(R/Ro)= -1.23, respectively, and the He-rich
envelope thickness is Menv= 0.02 Mo. We derive a seismic distance of 452 pc and
a linear size of the planetary nebula of 1.72 pc. These inferences seem to
solve the discrepancy between the RX J2117.1+3412 evolutionary timescale and
the size of the nebula. All of the seismological tools we use concur to the
conclusion that RX J2117.1+3412 must have a stellar mass of 0.565 Mo much in
agreement with recent asteroseismology studies and in clear conflict with the
predictions of spectroscopy plus evolutionary tracks.Comment: 10 pages, 6 figures, 2 tables. Accepted for publication in Astronomy
and Astrophysics. Erratum available as a separate fil