5 research outputs found

    Chase Dosing of Lipid Formulations to Enhance Oral Bioavailability of Nilotinib in Rats

    Get PDF
    Purpose: Lipid-based formulations (LBF) have shown oral bioavailability enhancement of lipophilic drugs, but not necessarily in the case of hydrophobic drugs. This study explored the potential of lipid vehicles to improve the bioavailability of the hydrophobic drug nilotinib comparing a chase dosing approach and lipid suspensions. Methods: Nilotinib in vivo bioavailability in rats was determined after administering an aqueous suspension chase dosed with blank olive oil, Captex 1000, Peceol or Capmul MCM, respectively. Absolute bioavailability was determined (relative to an intravenous formulation). Pharmacokinetic parameters were compared to lipid suspensions. Results: Compared to the lipid suspensions, the chase dosed lipids showed a 2- to 7-fold higher bioavailability. Both long chain chase dosed excipients also significantly increased the bioavailability up to 2-fold compared to the aqueous suspension. Deconvolution of the pharmacokinetic data indicated that chase dosing of nilotinib resulted in prolonged absorption compared to the aqueous suspension. Conclusion: Chase dosed LBF enhanced the in vivo bioavailability of nilotinib. Long chain lipids showed superior performance compared to medium chain lipids. Chase dosing appeared to prolong the absorption phase of the drug. Therefore, chase dosing of LBF is favourable compared to lipid suspensions for ‘brick dust’ molecules such as nilotinib

    Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor

    No full text
    In an earlier study we demonstrated that hydroxyapatite nanoparticles coated with chitosan-poly(d,l)-lactide-co-glycolide (HAp/Ch-PLGA) target lungs following their intravenous injection into mice. In this study we utilize an emulsification process and freeze drying to load the composite HAp/Ch-PLGA particles with 17β-hydroxy-17α-picolyl-androst-5-en-3β-yl-acetate (A), a chemotherapeutic derivative of androstane and a novel compound with a selective anticancer activity against lung cancer cells. 1H NMR and 13C NMR techniques confirmed the intact structure of the derivative A following its entrapment within HAp/Ch-PLGA particles. The thermogravimetric and differential thermal analyses coupled with mass spectrometry were used to assess the thermal degradation products and properties of A-loaded HAp/Ch-PLGA. The loading efficiency, as indicated by the comparison of enthalpies of phase transitions in pure A and A-loaded HAp/Ch-PLGA, equaled 7.47 wt.%. The release of A from HAp/Ch-PLGA was sustained, neither exhibiting a burst release nor plateauing after three weeks. Atomic force microscopy and particle size distribution analyses were used to confirm that the particles were spherical with a uniform size distribution of d50 = 168 nm. In vitro cytotoxicity testing of A-loaded HAp/Ch-PLGA using MTT and trypan blue dye exclusion assays demonstrated that the particles were cytotoxic to the A549 human lung carcinoma cell line (46 ± 2%), while simultaneously preserving high viability (83 ± 3%) of regular MRC5 human lung fibroblasts and causing no harm to primary mouse lung fibroblasts. In conclusion, composite A-loaded HAp/Ch-PLGA particles could be seen as promising drug delivery platforms for selective cancer therapies, targeting malignant cells for destruction, while having a significantly lesser cytotoxic effect on the healthy cells

    Glycemic Management in ESRD and Earlier Stages of CKD

    No full text
    The management of hyperglycemia in patients with kidney failure is complex, and the goals and methods regarding glycemic control in chronic kidney disease (CKD) are not clearly defined. Although aggressive glycemic control seems to be advantageous in early diabetic nephropathy, outcome data supporting tight glycemic control in patients with advanced CKD (including end-stage renal disease [ESRD]) are lacking. Challenges in the management of such patients include therapeutic inertia, monitoring difficulties, and the complexity of available treatments. In this article, we review the alterations in glucose homeostasis that occur in kidney failure, current views on the value of glycemic control and issues with its determination, and more recent approaches to monitor or measure glycemic control. Hypoglycemia and treatment options for patients with diabetes and ESRD or earlier stages of CKD also are addressed, discussing the insulin and noninsulin agents that currently are available, along with their indications and contraindications. The article provides information to help clinicians in decision making in order to provide individualized glycemic goals and appropriate therapy for patients with ESRD or earlier stages of CKD
    corecore