39 research outputs found

    Date Palm Leaflet-Derived Carbon Microspheres Activated Using Phosphoric Acid for Efficient Lead (II) Adsorption

    Get PDF
    \ua9 2024 by the authors.The removal of lead metals from wastewater was carried out with carbon microspheres (CMs) prepared from date palm leaflets using a hydrothermal carbonization process (HTC). The prepared CMs were subsequently activated with phosphoric acid using the incipient wetness impregnation method. The prepared sample had a low Brunauer–Emmet–Teller (BET) surface area of 2.21 m2\ub7g−1, which increased substantially to 808 m2\ub7g−1 after the activation process. Various characterization techniques, such as scanning electron microscopy, BET analysis, Fourier transform infrared, and elemental analysis (CHNS), were used to evaluate the morphological structure and physico-chemical properties of the CMs before and after activation. The increase in surface area is an indicator of the activation process, which enhances the absorption properties of the material. The results demonstrated that the activated CMs had a notable adsorption capacity, with a maximum adsorption capacity of 136 mg\ub7g−1 for lead (II) ions. This finding suggests that the activated CMs are highly effective in removing lead pollutants from water. This research underscores the promise of utilizing activated carbon materials extracted from palm leaflets as an eco-friendly method with high potential for water purification, specifically in eliminating heavy metal pollutants, particularly lead (II), contributing to sustainability through biomass reuse

    Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC

    Get PDF
    DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6  ×  6  ×  6 m 3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties

    The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 3 describes the dual-phase module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    The DUNE Far Detector Interim Design Report Volume 1: Physics, Technology and Strategies

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE Far Detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 1 contains an executive summary that describes the general aims of this document. The remainder of this first volume provides a more detailed description of the DUNE physics program that drives the choice of detector technologies. It also includes concise outlines of two overarching systems that have not yet evolved to consortium structures: computing and calibration. Volumes 2 and 3 of this IDR describe, for the single-phase and dual-phase technologies, respectively, each detector module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    The DUNE Far Detector Interim Design Report, Volume 2: Single-Phase Module

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 2 describes the single-phase module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network

    Get PDF
    Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation

    Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 3σ (5σ) level, with a 66 (100) kt-MW-yr far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters. We also show that DUNE has the potential to make a robust measurement of CPV at a 3σ level with a 100 kt-MW-yr exposure for the maximally CP-violating values \delta_{\rm CP}} = \pm\pi/2. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest

    Searching for solar KDAR with DUNE

    Get PDF

    The DUNE Far Detector Interim Design Report Volume 1: Physics, Technology and Strategies

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE Far Detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 1 contains an executive summary that describes the general aims of this document. The remainder of this first volume provides a more detailed description of the DUNE physics program that drives the choice of detector technologies. It also includes concise outlines of two overarching systems that have not yet evolved to consortium structures: computing and calibration. Volumes 2 and 3 of this IDR describe, for the single-phase and dual-phase technologies, respectively, each detector module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    Incorporating Technology Adoption in Medical Education: A Qualitative Study of Medical Students’ Perspectives

    No full text
    Fahad Abdulaziz Alrashed,1 Tauseef Ahmad,1 Muneera M Almurdi,2 Asma A Alderaa,2 Saad A Alhammad,2 Mohammad Serajuddin,3 Abdulrahman M Alsubiheen2 1Department of Medical Education, College of Medicine, King Saud University, Riyadh, Saudi Arabia; 2Department of Health Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia; 3College of Dentistry, King Saud University, Riyadh, Saudi ArabiaCorrespondence: Fahad Abdulaziz Alrashed, Department of Medical Education, College of Medicine, King Saud University, P.O Box 2925, Riyadh, 11461, Saudi Arabia, Tel +966596130110, Email [email protected]: The integration of technology into medical education has witnessed significant growth in recent years, with tools such as virtual reality, artificial intelligence, and telemedicine gaining prominence. These tool in medical education, offering immersive, experiential learning experiences.Methods: We approached medical students currently enrolled in medical education programs and who are familiar with and actively use AI in medical education. Initially, we invited 21 random students to participate in the study; however, only 13 agreed to interviews. Some students cited their busy exam schedules as the reason for not participating. The participants were informed of the objective of the study before the commencement of the recorded interviews. Semi-structured interviews were used to guide the record interviews. Audio recordings were transcribed and analyzed using Atlas.ti, a qualitative data analysis software.Results: Participants exhibited a diverse range of perceptions and levels of awareness regarding VR, AI, and telemedicine technologies. Learning with virtual reality was considered to be fun, memorable, inclusive, and engaging by participants. The use of virtual reality technology is seen as complementing current teaching and learning approaches, helping to build learners’ confidence, as well as providing medical students with a safe environment for problem-solving and trial-and-error learning. The students reported that AI was seen as a potential game-changer in the healthcare sector. Participants hoped that telemedicine would provide healthcare services to remote and underserved populations.Conclusion: The study conducted focus group discussions with medical students and residents in Saudi Arabia to explore their views on integrating VR, AI, and telemedicine in medical education and practice. Their insights highlight the need for informed decision-making and strategic development to optimize the benefits and address challenges like initial investments, technical issues, ethics, and regulations. These considerations are crucial for fully realizing the potential benefits of technology in medical education globally.keywords: learning education, medical education, medical education with virtual reality, technology in medical education, qualitative research teaching technology, artificial intelligenc
    corecore