3 research outputs found

    Long term cortical plasticity in visual retinotopic areas in humans with silent retinal ganglion cell loss

    Get PDF
    Visual cortical plasticity induced by overt retinal lesions (scotomas) has remained a controversial phenomenon. Here we studied cortical plasticity in a silent model of retinal ganglion cell loss, documented by in vivo optical biopsy using coherence tomography. The cortical impact of non-scotomatous subtle retinal ganglion cell functional and structural loss was investigated in carriers of the mitochondrial DNA 11778G > A mutation causing Leber's hereditary optic neuropathy. We used magnetic resonance imaging (MRI) to measure cortical thickness and fMRI to define retinotopic cortical visual areas V1, V2 and V3 in silent carriers and matched control groups. Repeated Measures analysis of variance revealed a surprising increase in cortical thickness in the younger carrier group (below 21 years of age). This effect dominated in extrastriate cortex, and notably V2. This form of structural plasticity suggests enhanced plastic developmental mechanisms in extrastriate retinotopic regions close to V1 and not receiving direct retinocortical input

    Abnormal late visual responses and alpha oscillations in neurofibromatosis type 1: a link to visual and attention deficits

    Get PDF
    Neurofibromatosis type 1 (NF1) affects several areas of cognitive function including visual processing and attention. We investigated the neural mechanisms underlying the visual deficits of children and adolescents with NF1 by studying visual evoked potentials (VEPs) and brain oscillations during visual stimulation and rest periods.This work was funded by the Institute of Interdisciplinary Research of the University of Coimbra (grant: III/14/2008) and the Portuguese Foundation for Science and Technology (grants: PIC/IC/83155/2007, Compete PTDC/SAU-ORG/118380/2010, PEST/C/SAU/3282/2013 and SFRH/BPD/34392/2006)

    Characterisation of microbial attack on archaeological bone

    Get PDF
    As part of an EU funded project to investigate the factors influencing bone preservation in the archaeological record, more than 250 bones from 41 archaeological sites in five countries spanning four climatic regions were studied for diagenetic alteration. Sites were selected to cover a range of environmental conditions and archaeological contexts. Microscopic and physical (mercury intrusion porosimetry) analyses of these bones revealed that the majority (68%) had suffered microbial attack. Furthermore, significant differences were found between animal and human bone in both the state of preservation and the type of microbial attack present. These differences in preservation might result from differences in early taphonomy of the bones. © 2003 Elsevier Science Ltd. All rights reserved
    corecore