96 research outputs found

    Optimization of Aggregators Energy Resources considering Local Markets and Electric Vehicle Penetration

    Get PDF
    O sector elétrico tem vindo a evoluir ao longo do tempo. Esta situação deve-se ao facto de surgirem novas metodologias para lidarem com a elevada penetração dos recursos energéticos distribuídos (RED), principalmente veículos elétricos (VEs). Neste caso, a gestão dos recursos energéticos tornou-se mais proeminente devido aos avanços tecnológicos que estão a ocorrer, principalmente no contexto das redes inteligentes. Este facto torna-se importante, devido à incerteza decorrente deste tipo de recursos. Para resolver problemas que envolvem variabilidade, os métodos baseados na inteligência computacional estão a se tornar os mais adequados devido à sua fácil implementação e baixo esforço computacional, mais precisamente para o caso tratado na tese, algoritmos de computação evolucionária (CE). Este tipo de algoritmo tenta imitar o comportamento observado na natureza. Ao contrário dos métodos determinísticos, a CEé tolerante à incerteza; ou seja, é adequado para resolver problemas relacionados com os sistemas energéticos. Estes sistemas são geralmente de grandes dimensões, com um número crescente de variáveis e restrições. Aqui a IC permite obter uma solução quase ótima em tempo computacional aceitável com baixos requisitos de memória. O principal objetivo deste trabalho foi propor um modelo para a programação dos recursos energéticos dos recursos dedicados para o contexto intradiário, para a hora seguinte, partindo inicialmente da programação feita para o dia seguinte, ou seja, 24 horas para o dia seguinte. Esta programação é feita por cada agregador (no total cinco) através de meta-heurísticas, com o objetivo de minimizar os custos ou maximizar os lucros. Estes agregadores estão inseridos numa cidade inteligente com uma rede de distribuição de 13 barramentos com elevada penetração de RED, principalmente energia renovável e VEs (2000 VEs são considerados nas simulações). Para modelar a incerteza associada ao RED e aos preços de mercado, vários cenários são gerados através da simulação de Monte Carlo usando as funções de distribuição de probabilidade de erros de previsão, neste caso a função de distribuição normal para o dia seguinte. No que toca à incerteza no modelo para a hora seguinte, múltiplos cenários são gerados a partir do cenário com maior probabilidade do dia seguinte. Neste trabalho, os mercados locais de eletricidade são também utilizados como estratégia para satisfazer a equação do balanço energético onde os agregadores vão para vender o excesso de energia ou comprar para satisfazer o consumo. Múltiplas metaheurísticas de última geração são usadas para fazer este escalonamento, nomeadamente Differential Evolution (DE), Hybrid-Adaptive DE with Decay function (HyDE-DF), DE with Estimation of Distribution Algorithm (DEEDA), Cellular Univariate Marginal Distribution Algorithm with Normal-Cauchy Distribution (CUMDANCauchy++), Hill Climbing to Ring Cellular Encode-Decode UMDA (HC2RCEDUMDA). Os resultados mostram que o modelo proposto é eficaz para os múltiplos agregadores com variações de custo na sua maioria abaixo dos 5% em relação ao dia seguinte, exceto para o agregador e de VEs. É também aplicado um teste Wilcoxon para comparar o desempenho do algoritmo CUMDANCauchy++ com as restantes meta-heurísticas. O CUMDANCauchy++ mostra resultados competitivos tendo melhor performance que todos os algoritmos para todos os agregadores exceto o DEEDA que apresenta resultados semelhantes. Uma estratégia de aversão ao risco é implementada para um agregador no contexto do dia seguinte para se obter uma solução mais segura e robusta. Os resultados mostram um aumento de quase 4% no investimento, mas uma redução de até 14% para o custo dos piores cenários.The electrical sector has been evolving. This situation is because new methodologies emerge to deal with the high penetration of distributed energy resources (DER), mainly electric vehicles (EVs). In this case, energy resource management has become increasingly prominent due to the technological advances that are taking place, mainly in the context of smart grids. This factor becomes essential due to the uncertainty of this type of resource. To solve problems involving variability, methods based on computational intelligence (CI) are becoming the most suitable because of their easy implementation and low computational effort, more precisely for the case treated in this thesis, evolutionary computation (EC) algorithms. This type of algorithm tries to mimic behavior observed in nature. Unlike deterministic methods, the EC is tolerant of uncertainty, and thus it is suitable for solving problems related to energy systems. These systems are usually of high dimensions, with an increased number of variables and restrictions. Here the CI allows obtaining a near-optimal solution in good computational time with low memory requirements. This work's main objective is to propose a model for the energy resource scheduling of the dedicated resources for the intraday context, for the our-ahead, starting initially from the scheduling done for the day ahead, that is, 24 hours for the next day. This scheduling is done by each aggregator (in total five) through metaheuristics to minimize the costs or maximize the profits. These aggregators are inserted in a smart city with a distribution network of 13 buses with a high penetration of DER, mainly renewable energy and EVs (2000 EVs are considered in the simulations). Several scenarios are generated through Monte Carlo Simulation using the forecast errors' probability distribution functions, the normal distribution function for the day-ahead to model the uncertainty associated with DER and market prices. Multiple scenarios are developed through the highest probability scenario from the day-ahead when it comes to intraday uncertainty. In this work, local electricity markets are used as a mechanism to satisfy the energy balance equation where each aggregator can sell the excess of energy or buy more to meet the demand. Several recent and modern metaheuristics are used to solve the proposed problems in the thesis, namely Differential Evolution (DE), Hybrid-Adaptive DE with Decay function (HyDE-DF), DE with Estimation of Distribution Algorithm (DEEDA), Cellular Univariate Marginal Distribution Algorithm with NormalCauchy Distribution (CUMDANCauchy++), Hill Climbing to Ring Cellular Encode-Decode UMDA (HC2RCEDUMDA). Results show that the proposed model is effective for the multiple aggregators. The metaheuristics present satisfactory results and mostly less than 5% variation in costs from the day-ahead except for the EV aggregator. A Wilcoxon test is also applied to compare the performance of the CUMDANCauchy++ algorithm with the remaining metaheuristics. CUMDANCauchy++ shows competitive results beating all algorithms in all aggregators except for DEEDA, which presents similar results. A risk aversion strategy is implemented for an aggregator in the day-ahead context to get a safer and more robust solution. Results show an increase of nearly 4% in day-ahead cost but a reduction of up to 14% of worst scenario cost

    Relato da experiência da realização de pequenos procedimentos em dermatologia em Hospital Universitário

    Get PDF
    Modelo do estudo: Cohort. Objetivos: Relatar a experiência do setor de Pequenos Procedimentos em Dermatologia do Hospital Universitário Gaffrée e Guinle, determinando os diagnósticos, tipos de tratamentos e resolutividade. Metodologia: Trata-se de estudo prospectivo, observacional, por meio da coleta de dados dos pacientes do Programa de Saúde da Família da Secretaria Municipal de Saúde do Rio de Janeiro encaminhados para a realização de pequenos procedimentos em dermatologia, durante um período de 31 semanas. Resultados: Foram atendidos 884 pacientes. As lesões benignas representaram 77,5% dos diagnósticos clínicos e as malignas 22,5%. Os diagnósticos mais frequentes foram de cisto (133) e carcinoma basocelular (128). Os procedimentos mais realizados foram a excisão e sutura simples (337) e a retirada de lesão por shaving mais eletrocoagulação (161). No total, 98,3% dos procedimentos foram de cirurgia dermatológica básica e 1,7% dos casos necessitaram de procedimentos avançados. Além disso, 90,8% dos pacientes foram operados no dia do primeiro atendimento e 3,7% precisaram ser encaminhados para outras especialidades cirúrgicas. Conclusão: Um serviço de cirurgia dermatológica estruturado para a realização de pequenos procedimentos, em caráter ambulatorial, permite prover atendimento resolutivo à grande maioria dos pacientes com essa necessidade.Study design: Cohort study. Objectives: To report the experience of the Small Procedures Division, Dermatology Department, at Gaffrée and Guinle University Hospital, including a description of diagnoses, types of treatment, and efficacy. Methods: This is a prospective, observational study that consisted of data compilation of patients referred from the primary Family Health Program, Local Health Department, to an University Hospital for the performance of small dermatological procedures, encompassing a period of 31 weeks. Results: Overall, 884 patients underwent procedures. Benign lesions comprised 77.5% of the clinical diagnoses, while malignant lesions constituted 22.5%. The most frequent diagnoses were cyst (133) and basal cell carcinoma (128). The most commonly performed procedures were simple excision and suture (337) and lesion removal through shaving plus electrocoagulation (161). 98.3% of the procedures consisted of basic dermatological surgeries and 1.7% of the cases required advanced procedures. In addition, 90.8% of the patients were operated on the first day of care, on the other hand 3.7% were referred to other surgical specialties. Conclusion: A Dermatologic Surgery Department structured to perform small outpatient procedures provides efficacious care to the vast majority of referred patients

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Local hydrological conditions influence tree diversity and composition across the Amazon basin

    Get PDF
    Tree diversity and composition in Amazonia are known to be strongly determined by the water supplied by precipitation. Nevertheless, within the same climatic regime, water availability is modulated by local topography and soil characteristics (hereafter referred to as local hydrological conditions), varying from saturated and poorly drained to well-drained and potentially dry areas. While these conditions may be expected to influence species distribution, the impacts of local hydrological conditions on tree diversity and composition remain poorly understood at the whole Amazon basin scale. Using a dataset of 443 1-ha non-flooded forest plots distributed across the basin, we investigate how local hydrological conditions influence 1) tree alpha diversity, 2) the community-weighted wood density mean (CWM-wd) – a proxy for hydraulic resistance and 3) tree species composition. We find that the effect of local hydrological conditions on tree diversity depends on climate, being more evident in wetter forests, where diversity increases towards locations with well-drained soils. CWM-wd increased towards better drained soils in Southern and Western Amazonia. Tree species composition changed along local soil hydrological gradients in Central-Eastern, Western and Southern Amazonia, and those changes were correlated with changes in the mean wood density of plots. Our results suggest that local hydrological gradients filter species, influencing the diversity and composition of Amazonian forests. Overall, this study shows that the effect of local hydrological conditions is pervasive, extending over wide Amazonian regions, and reinforces the importance of accounting for local topography and hydrology to better understand the likely response and resilience of forests to increased frequency of extreme climate events and rising temperatures

    Mapping density, diversity and species-richness of the Amazon tree flora

    Get PDF
    Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution

    Geography and ecology shape the phylogenetic composition of Amazonian tree communities

    Get PDF
    Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location: Amazonia. Taxon: Angiosperms (Magnoliids; Monocots; Eudicots). Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran\u27s eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results: In the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2^{2} = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2^{2} = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions

    Geographic patterns of tree dispersal modes in Amazonia and their ecological correlates

    Get PDF
    Aim: To investigate the geographic patterns and ecological correlates in the geographic distribution of the most common tree dispersal modes in Amazonia (endozoochory, synzoochory, anemochory and hydrochory). We examined if the proportional abundance of these dispersal modes could be explained by the availability of dispersal agents (disperser-availability hypothesis) and/or the availability of resources for constructing zoochorous fruits (resource-availability hypothesis). Time period: Tree-inventory plots established between 1934 and 2019. Major taxa studied: Trees with a diameter at breast height (DBH) ≥ 9.55 cm. Location: Amazonia, here defined as the lowland rain forests of the Amazon River basin and the Guiana Shield. Methods: We assigned dispersal modes to a total of 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests. We investigated geographic patterns in the proportional abundance of dispersal modes. We performed an abundance-weighted mean pairwise distance (MPD) test and fit generalized linear models (GLMs) to explain the geographic distribution of dispersal modes. Results: Anemochory was significantly, positively associated with mean annual wind speed, and hydrochory was significantly higher in flooded forests. Dispersal modes did not consistently show significant associations with the availability of resources for constructing zoochorous fruits. A lower dissimilarity in dispersal modes, resulting from a higher dominance of endozoochory, occurred in terra-firme forests (excluding podzols) compared to flooded forests. Main conclusions: The disperser-availability hypothesis was well supported for abiotic dispersal modes (anemochory and hydrochory). The availability of resources for constructing zoochorous fruits seems an unlikely explanation for the distribution of dispersal modes in Amazonia. The association between frugivores and the proportional abundance of zoochory requires further research, as tree recruitment not only depends on dispersal vectors but also on conditions that favour or limit seedling recruitment across forest types

    Geography and ecology shape the phylogenetic composition of Amazonian tree communities

    Get PDF
    AimAmazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types.LocationAmazonia.TaxonAngiosperms (Magnoliids; Monocots; Eudicots).MethodsData for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny.ResultsIn the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types.Main ConclusionNumerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe
    corecore