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Resumo 

O sector elétrico tem vindo a evoluir ao longo do tempo. Esta situação deve-se ao facto de 

surgirem novas metodologias para lidarem com a elevada penetração dos recursos 

energéticos distribuídos (RED), principalmente veículos elétricos (VEs). Neste caso, a 

gestão dos recursos energéticos tornou-se mais proeminente devido aos avanços 

tecnológicos que estão a ocorrer, principalmente no contexto das redes inteligentes. Este 

facto torna-se importante, devido à incerteza decorrente deste tipo de recursos. Para resolver 

problemas que envolvem variabilidade, os métodos baseados na inteligência computacional   

estão a se tornar os mais adequados devido à sua fácil implementação e baixo esforço 

computacional, mais precisamente para o caso tratado na tese, algoritmos de computação 

evolucionária (CE). Este tipo de algoritmo tenta imitar o comportamento observado na 

natureza. Ao contrário dos métodos determinísticos, a CEé tolerante à incerteza; ou seja, é 

adequado para resolver problemas relacionados com os sistemas energéticos. Estes sistemas 

são geralmente de grandes dimensões, com um número crescente de variáveis e restrições. 

Aqui a IC permite obter uma solução quase ótima em tempo computacional aceitável com 

baixos requisitos de memória. O principal objetivo deste trabalho foi propor um modelo para 

a programação dos recursos energéticos dos recursos dedicados para o contexto intradiário, 

para a hora seguinte, partindo inicialmente da programação feita para o dia seguinte, ou seja, 

24 horas para o dia seguinte. Esta programação é feita por cada agregador (no total cinco) 

através de meta-heurísticas, com o objetivo de minimizar os custos ou maximizar os lucros. 

Estes agregadores estão inseridos numa cidade inteligente com uma rede de distribuição de 

13 barramentos com elevada penetração de RED, principalmente energia renovável e VEs 

(2000 VEs são considerados nas simulações). Para modelar a incerteza associada ao RED e 

aos preços de mercado, vários cenários são gerados através da simulação de Monte Carlo 

usando as funções de distribuição de probabilidade de erros de previsão, neste caso a função 

de distribuição normal para o dia seguinte. No que toca à incerteza no modelo para a hora 

seguinte, múltiplos cenários são gerados a partir do cenário com maior probabilidade do dia 

seguinte. Neste trabalho, os mercados locais de eletricidade são também utilizados como 

estratégia para satisfazer a equação do balanço energético onde os agregadores vão para 
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vender o excesso de energia ou comprar para satisfazer o consumo. Múltiplas meta-

heurísticas de última geração são usadas para fazer este escalonamento, nomeadamente 

Differential Evolution (DE), Hybrid-Adaptive DE with Decay function (HyDE-DF), DE with 

Estimation of Distribution Algorithm (DEEDA), Cellular Univariate Marginal Distribution 

Algorithm with Normal-Cauchy Distribution (CUMDANCauchy++), Hill Climbing to Ring 

Cellular Encode-Decode UMDA (HC2RCEDUMDA). Os resultados mostram que o modelo 

proposto é eficaz para os múltiplos agregadores com variações de custo na sua maioria 

abaixo dos 5% em relação ao dia seguinte, exceto para o agregador e de VEs. É também 

aplicado um teste Wilcoxon para comparar o desempenho do algoritmo 

CUMDANCauchy++ com as restantes meta-heurísticas. O CUMDANCauchy++ mostra 

resultados competitivos tendo melhor performance que todos os algoritmos para todos os 

agregadores exceto o DEEDA que apresenta resultados semelhantes. Uma estratégia de 

aversão ao risco é implementada para um agregador no contexto do dia seguinte para se obter 

uma solução mais segura e robusta. Os resultados mostram um aumento de quase 4% no 

investimento, mas uma redução de até 14% para o custo dos piores cenários. 

Palavras-Chave 

Agregadores, aversão ao risco, gestão de recursos energéticos, inteligência computacional, 

rede inteligente, veículos elétricos 

 



v 

  

Abstract 

The electrical sector has been evolving. This situation is because new methodologies emerge 

to deal with the high penetration of distributed energy resources (DER), mainly electric 

vehicles (EVs). In this case, energy resource management has become increasingly 

prominent due to the technological advances that are taking place, mainly in the context of 

smart grids. This factor becomes essential due to the uncertainty of this type of resource. To 

solve problems involving variability, methods based on computational intelligence (CI) are 

becoming the most suitable because of their easy implementation and low computational 

effort, more precisely for the case treated in this thesis, evolutionary computation (EC) 

algorithms. This type of algorithm tries to mimic behavior observed in nature. Unlike 

deterministic methods, the EC is tolerant of uncertainty, and thus it is suitable for solving 

problems related to energy systems. These systems are usually of high dimensions, with an 

increased number of variables and restrictions. Here the CI allows obtaining a near-optimal 

solution in good computational time with low memory requirements. This work's main 

objective is to propose a model for the energy resource scheduling of the dedicated resources 

for the intraday context, for the our-ahead, starting initially from the scheduling done for the 

day ahead, that is, 24 hours for the next day. This scheduling is done by each aggregator (in 

total five) through metaheuristics to minimize the costs or maximize the profits. These 

aggregators are inserted in a smart city with a distribution network of 13 buses with a high 

penetration of DER, mainly renewable energy and EVs (2000 EVs are considered in the 

simulations). Several scenarios are generated through Monte Carlo Simulation using the 

forecast errors' probability distribution functions, the normal distribution function for the 

day-ahead to model the uncertainty associated with DER and market prices. Multiple 

scenarios are developed through the highest probability scenario from the day-ahead when 

it comes to intraday uncertainty. In this work, local electricity markets are used as a 

mechanism to satisfy the energy balance equation where each aggregator can sell the excess 

of energy or buy more to meet the demand. Several recent and modern metaheuristics are 

used to solve the proposed problems in the thesis, namely Differential Evolution (DE), 

Hybrid-Adaptive DE with Decay function (HyDE-DF), DE with Estimation of Distribution 
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Algorithm (DEEDA), Cellular Univariate Marginal Distribution Algorithm with Normal-

Cauchy Distribution (CUMDANCauchy++), Hill Climbing to Ring Cellular Encode-Decode 

UMDA (HC2RCEDUMDA). Results show that the proposed model is effective for the 

multiple aggregators. The metaheuristics present satisfactory results and mostly less than 5% 

variation in costs from the day-ahead except for the EV aggregator. A Wilcoxon test is also 

applied to compare the performance of the CUMDANCauchy++ algorithm with the 

remaining metaheuristics. CUMDANCauchy++ shows competitive results beating all 

algorithms in all aggregators except for DEEDA, which presents similar results. A risk 

aversion strategy is implemented for an aggregator in the day-ahead context to get a safer 

and more robust solution. Results show an increase of nearly 4% in day-ahead cost but a 

reduction of up to 14% of worst scenario cost. 

Keywords 

Aggregators, computational intelligence, electric vehicles, energy resource management, 

risk-aversion, smart grid  
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1. INTRODUCTION 

The work carried out to elaborate this document was done in collaboration with the Research 

Group on Intelligent Engineering and Computing for Advanced Innovation and 

Development (GECAD) within the CENERGETIC project1. The CENERGETIC project: 

Coordinated ENErgy Resource manaGEment under uncerTainty considering electrIc 

vehiCles and demand flexibility in distribution networks, aims to address a relevant societal 

problem by improving the integration of renewable energy resources and electric vehicles 

(EVs) in smart grids (SGs). This research has received funding from FEDER funds through 

the Operational Programme for Competitiveness and Internationalization (COMPETE 

2020), under Project POCI-01-0145-FEDER-028983; by National Funds through the FCT 

Portuguese Foundation for Science and Technology, under Projects PTDC/EEI-

EEE/28983/2017(CENERGETIC), UIDB/000760/2020, and UIDP/00760/2020. 

This chapter presents an introduction to the work with the motivation that led to the proposal 

and development of the topic, the main objectives to be taken into consideration, an expected 

timeframe for the project fulfillment and the document organization. 

 

 

 

1
 http://www.gecad.isep.ipp.pt/CENERGETIC 
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1.1. MOTIVATION 

In the future distribution network (DN), several electricity suppliers and/or energy 

aggregators2 will coexist in a highly competitive environment. This situation occurs because 

power systems are moving from structures integrated vertically to deregulated markets with 

the increasing appearance of new actors [1]. Each supplier, and aggregators’ objective is to 

offer the best energy product to their customers at the best price to obtain the highest return 

[2]. These aggregators can establish contracts with apartments, residential buildings, 

services, industry, and EVs either for their consumption or for their production (prosumers3) 

[3], [4]. 

According to each aggregator's resources, they will seek to minimize their costs or maximize 

their profits. As such, each one will have to make optimal management of these resources. 

This management is always subject to uncertainty, which increases the further it is from real-

time; still, long-term and mid-term planning is necessary and should not be avoided. The 

intention is to make this management as close as possible to real-time to mitigate deviations 

in forecasts and the underlying uncertainty. Still, the time for decision-making is shortened. 

So day-ahead management should still be made. It is essential because there is more time for 

the aggregators to decide, and the day-ahead scheduling will complement the intraday 

scheduling.After this management, aggregators should submit their scheduling for approval 

of the network in which they are operating through the distribution system operator (DSO) 

so that there are no problems for the DN [5].  

In order to provide the decision-maker with an enhanced energy resource management 

(ERM) tool, a risk-based mechanism is implemented in this thesis to provide a more robust 

solution in case of extreme events (hedging risk), such as a spike in market prices, a reduction 

in renewables availability, and other events that despite the very low probability of 

occurrence, their realization may result in undesirable effects and hinder the effectiveness of 

 

 

2
 Entity that bundles distributed energy resources (a virtual power plant) for market participation 

3
 Entity that is both a consumer and energy producer 
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traditional ERM tools. This aspect is novel in the current state of the art, where risk-based 

analysis has mostly been applied to energy planning problems [6], [7]. 

1.2. OBJECTIVES 

This thesis's main objective is to optimize aggregators' energy resources in a competitive 

environment considering local transactions and intensive penetration of EVs. As such, work 

was managed by objectives: 

• Development of advanced scheduling algorithms considering the various contracts that 

aggregators can establish; 

• Algorithms based on heuristics to respond to the complexities of the problem and time to 

solve the problem; 

• Consider different scheduling phases in the day-ahead and intraday and/or near real-time 

horizon; 

• Consideration of uncertainty in the various horizon phases and high penetration of 

renewables and EVs; 

• Implementation of risk analysis methodology in the day-ahead scheduling of energy 

resources, known as VaR (value-at-risk) and CVaR (conditional value-at-risk). 

1.3. SCHEDULE 

The schedule of this dissertation work is presented in Figure 1. This schedule included tasks 

such as the study of literature corresponding to the theme of this work, the writing of the 

knowledge obtained from this study, which corresponds to the writing of this document. 

Then the project's development proceeded with the modulation of optimization algorithms, 

the creation of scenarios for resource uncertainty, and the ERM of each aggregator for 

different time horizons with the integration of local electricity markets (LEMs). A risk-based 

strategy was applied to an aggregator for the day-ahead optimization. Finally, the results 

were carefully analyzed, with the final writing of the dissertation. 
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Figure 1 Expected project scheduling. 

1.4. PUBLICATIONS 

The work already done for this dissertation resulted in multiple scientific papers. The first 

three articles have already been accepted and published. The following are accepted for 

presentation, with the final two already being presented, just awaiting publication. The 

papers are: 

Book Chapter 

• J. Almeida, and J. Soares, “Chapter 2 - Integration of electric vehicles in local energy 

markets,” in Local Electricity Markets, pp. 21–36, 2021, doi: 10.1016/B978-0-12-

820074-2.00018-6. 

Journal Papers 

• J. Almeida, J. Soares, B. Canizes, and Z. Vale, “Coordination strategies in 

distribution network considering multiple aggregators and high penetration of 

electric vehicles,” Procedia Computer Science, vol. 186, pp. 698–705, 2021, doi: 

10.1016/j.procs.2021.04.192. 
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• B. Canizes, J. Soares, J. Almeida, and Z. Vale, “Hour-ahead Energy Resource 

Scheduling Optimization for Smart Power Distribution Networks considering Local 

Energy Market,” in Energy Reports, vol. xx, pp. xx, presented at 8th International 

Conference on Energy and Environment Research (ICEER 2021). 

• J. Soares, J. Almeida, L. Gomes, B. Canizes, and Z. Vale, E. A. Neto, “Electric 

vehicles local flexibility strategies for congestion relief on distribution networks,” in 

Energy Reports, vol. xx, pp. xx, presented at 8th International Conference on Energy 

and Environment Research (ICEER 2021). 

Conference Papers 

• J. Almeida, J. Soares, B. Canizes, F. Lezama, M. A. Ghazvini Fotouhi, and Z. Vale, 

“Evolutionary Algorithms for Energy Scheduling under uncertainty considering 

Multiple Aggregators,” in 2021 IEEE Congress on Evolutionary Computation 

(CEC), Kraków, Poland, Jun. 2021, pp. 225–232. doi: 

10.1109/CEC45853.2021.9504942. 

• J. Almeida, J. Soares, B. Canizes, I. Razo-Zapata, and Z. Vale, “Intraday Energy 

Resource Scheduling for Load Aggregators Considering Local Market,” in 16th 

International Conference on Soft Computing Models in Industrial and Environmental 

Applications (SOCO 2021), Cham, 2022, pp. 233–242. doi: 10.1007/978-3-030-

87869-6_22.  

• J. Almeida, J. Soares, B. Canizes, F. Lezama, and Z. Vale, “Hour-ahead Energy 

Resource Management for EV Aggregator Analysing Local Market Impact,” in 2021 

IEEE PES Innovative Smart Grid Technology, Brisbane, Australia, Dec. 2021. 

(accepted) 

• J. Almeida, J. Soares, F. Lezama, B. Canizes, and Z. Vale, “Evolutionary Algorithms 

applied to the Intraday Energy Resource Scheduling in the Context of Multiple 

Aggregators,” in IEEE Symposium Series on Computational Intelligence (IEEE 

SSCI 2021), Orlando, Florida, USA, Dec. 2021. (accepted) 
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• B. Canizes, J. Soares, J. Almeida, W. Paris, and Zita Vale, “Energy Resource 

Scheduling Optimization for Smart Power Distribution Grids – Hour-ahead 

Horizon,” in IEEE PES Innovative Smart Grid Technologies Europe, 18-21 October 

2021, pp. 1-6., Esppo, Finland.  

Currently, an IEEE Access paper based on the risk methodology here shown is being written 

and expected to be submitted before this thesis presentation. The paper is currently titled 

“Risk-Based Optimal Energy Resource Scheduling considering High Penetration of 

Distributed Energy Resources.” 

1.5. DOCUMENT ORGANIZATION 

The structure of this document is as follows: In chapter 1, the main objectives and 

motivations are presented to accomplish this work. The following chapter presents a 

theoretical background detailing the various themes associated with the proposed work. 

Themes such as evolutionary optimization algorithms, the SG concept, the EVs, the demand 

response (DR) programs, the flexibility that the EVs provide are detailed, LEM, and the risk 

measuring tools are also described with the main conclusions drawn from the literature 

research being presented. The mathematical formulations of the day-ahead and intraday 

problems are presented in chapter 3, the optimization technique applied to the problem, and 

the uncertainty associated with the energy resources regarding the intraday and day-ahead 

time horizons with the risk-based strategy formulation for the ERM problem in the day-

ahead. In chapter 4, the case study for this work starts with the description of the DN and 

aggregators. The parameters for the EV scenario simulator tool are also offered, and energy 

resources for each aggregator considering the intraday model and risk-based methodology 

for one aggregator in the day-ahead are also described. Finally, the multiple results obtained 

for the proposed simulations are given in the following section, and the main conclusions to 

this work are presented in chapter 6.  
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2. THEORETICAL 

BACKGROUND 

This chapter presents the state of art regarding the topics of the proposed work. It presents 

the related work developed in the various themes shown throughout this chapter. 

2.1. COMPUTATIONAL INTELLIGENCE 

Algorithms based on computational intelligence (CI), in this case, evolutionary algorithms 

(EAs), originate from the biological evolution observed in nature through reproduction, 

recombination, mutation, and selection. They are defined as population-based 

metaheuristics. Unlike more traditional algorithms based on deterministic methods, EAs are 

based on stochastic processes, which means they are more tolerant to uncertainty. That is, it 

is suitable for solving problems related to energy systems because electrical energy systems 

are large systems with many variables and constraints. Here evolutionary computational 

(EC) based algorithms are more adequate to solve these systems' problems concerning exact 

optimization methods. The exact techniques, although they guarantee an optimal solution to 

the optimization problem, are of complex implementation and do not always generate an 

optimal solution in useful time. On the other hand, EAs are used to solve problems that 
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cannot be easily solved in polynomial time, such as classically NP-hard (verifiable in 

polynomial time if NP-hard problem is NP-complete, where an NP problem means that the 

decision can be verified in polynomial time) problems allowing to obtain an optimal or near-

optimal solution in useful time with low memory requirements. Examples of CI algorithms 

are genetic algorithm (GA) [8], non-dominated sorting GA II (NSGA-II) [9], differential 

evolution (DE) [10], particle swarm optimization (PSO) [11], and its variations like 

quantum-behaved PSO (QPSO) [12], multi-objective PSO (MOPSO) [13], weighted PSO 

(W-PSO) [14].  Harmony search (HS) [15], differential search algorithm (DSA) [16], hybrid 

DSA (HDSA) [17], hybrid optimization algorithm (HOA) [18], among several others, were 

researched for this work. Table 1 shows the implementation of these metaheuristics to solve 

optimization problems in electrical energy systems. 

Evolutionary algorithms are used to optimize the ERM problem in this work because in [19], 

a similar situation is proposed. In the proposed competition, EAs scored better on the 

proposed ERM problem than other CI algorithms. 

Table 1 Metaheuristics used to solve energy problems. 

Reference Metaheuristics Optimization problem 

[20] PSO 
Energy resource scheduling with EVs and DR programs 

in the day-ahead context. 

[21] DE, PSO, QPSO, DSA Large-Scale Energy Resource Management in SGs. 

[18] 
Tabu Search, GRASP, 

HOA 
Plug-in EV charging coordination. 

[22] 
W-PSO, MOPSO, 

NSGA-II 

Energy resource management in SG with multi-objective 

goals. 

[17] 
PSO, QPSO, DSA, 

HDSA 
Large-Scale Energy Resource Management in SGs. 

2.1.1. DIFFERENTIAL EVOLUTION 

Storn and Price first introduced the DE algorithm in 1995 [10]. DE optimizes a problem 

through the combination of existing solutions and new solutions created by it. This algorithm 

keeps the solutions that best fit the problem in question or present better fitness. This 

algorithm's steps are: first, a solution is generated (target vector), then through mutation, a 

donor vector is generated and through recombination, a trial vector is generated like Figure 

2 shows. 
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In this algorithm, the selection of better solutions is performed through greedy selection 

between the target and trial vectors only after the generation of all trial vectors. The donor 

vector in its simplest form can be represented as: 

V = Xr1 + F (Xr2 – Xr3). (1) 

Where V represents the donor vector, Xr1, Xr2, Xr3 are three random solutions from the 

population that are different from each one. F is a scaling factor of constant value 

comprehended between 0 and 1.  

This algorithm presents several mutation strategies which in general can be represented as 

“DE/x/y/z”, where x represents the vector to be mutated, y is the number of difference vectors 

(random solutions) required for mutation, and z is the type of crossover mechanism to be 

used (exponential or binomial). Figure 2 presents the process performed in the standard DE 

algorithm with the “DE/rand/1” mutation strategy. 

 

Figure 2 Standard DE algorithm. 
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New optimization applications in electrical power systems have emerged based on DE. The 

work in [21] analyzes the use of DE in a 33 bus DN with high penetration of distributed 

energy resources (DER) and DR programs. The authors analyze the performance of the 

algorithm with four state-of-the-art mutation strategies. A comparison between these 

strategies, other EAs and a deterministic method, is made with over 50 runs of the 

algorithms. In [23] an optimal active-reactive power dispatch using an efficient DE 

algorithm is presented. This algorithm uses an arithmetic recombination crossover and 

adapts its scaling factor based on the Laplace distribution providing excellent solutions. 

2.1.2. HYBRID-ADAPTATIVE DIFFERENTIAL EVOLUTION WITH DECAY FUNCTION 

Hybrid-Adaptive Differential Evolution with Decay Function (HyDE-DF) [24] is a state-of-

the-art metaheuristic based on DE that uses the mutation operator “DE/target-to-

perturbed_best/1”, the same as the normal hybrid-adaptative DE with a decay factor 𝛿𝐺. This 

factor decreases gradually according to the number of iterations. The mutation operator of 

the HyDE-DF algorithm is calculated as follows: 

𝑚⃗⃗  = 𝑥 𝑖,𝐺+ 𝛿𝐺  ⋅ [𝐹𝑖
1(𝜖 ⋅ 𝑥 𝑏𝑒𝑠𝑡 − 𝑥 𝑖,𝐺)] + 𝐹𝑖

2(𝑥 𝑟1,𝐺 − 𝑥 𝑟2,𝐺). (2) 

Where 𝑥 𝑟1,𝐺, 𝑥 𝑟2,𝐺  are different from 𝑥⃗⃗ 𝑖,𝐺, the current target vector, and 𝑥 𝑏𝑒𝑠𝑡 is the best 

solution found. 𝐹𝑖
1, and 𝐹𝑖

2are two scale factors within the range [0,1] independent for each 

individual 𝑖, where ϵ = 𝑁(𝐹𝑖
3,1) which represents a random perturbation factor, from normal 

distribution with mean value of 𝐹𝑖
3, and standard deviation 1. 𝐹𝑖

1, 𝐹𝑖
2, and 𝐹𝑖

3, are updated 

each iteration following the self-adaptive parameter mechanism of jDE algorithm [25]. 𝛿𝐺 is 

necessary to decrease the influence of the term 𝐹𝑖
1(𝜖 ⋅ 𝑥 𝑏𝑒𝑠𝑡 − 𝑥 𝑖,𝐺)] responsible for the fast 

convergence to the best individual in the population. In an initial phase, the algorithm 

presents a greater diversity. It is said that there is a greater exploitation following the best 

solution. Small adjustments are made in the decay function in the final phases so that smaller 

jumps are made in the research space, and there is greater local exploration like Figure 3 

shows [26]. 
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Figure 3 Decay factor is used to gradually switch between the original HyDE operator to the 

DE/rand/1 operator [26]. 

Reference [27] uses HyDE-DF algorithm as well as many other EAs to find the optimal 

bidding of multiple agents in a competitive environment considering local transactions. It 

can be concluded from this work that the existence of local markets (LMs) increases the 

agents’ incomes (or lowers the agents’ costs). 

2.1.3. DIFFERENTIAL EVOLUTION WITH ESTIMATION OF DISTRIBUTION 

ALGORITHM 

The DE with Estimation of Distribution Algorithm (DEEDA) [28] is an EA that in an initial 

phase uses the standard DE algorithm to obtain a partial solution using in this case the 

“DE/rand/bin” mutation factor. The DE runs through a certain number of iterations given by 

a step parameter defined by the user. The best solution found by the DE algorithm is then 

passed as an argument to the EDA. In the EDA a population and a subpopulation are created 

through selection of individuals. After Normal and Cauchy distributions are used to generate 

a new population based on the selected individuals in the subpopulation, and the global 

solution is found through selection like Figure 4 shows. Combining these two different 

algorithms helps the optimum solution to be guided on a correct global scale. This algorithm 

was used in the "2020 Competition on Evolutionary Computation in the Energy Domain: 

Smart Grid Applications" obtaining great results placing in the higher rankings of the 

competition [19]. 
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Figure 4 Structure of the DEEDA optimization algorithm [28]. 

2.1.4. CELLULAR UNIVARIATE MARGINAL DISTRIBUTION ALGORITHM 

Cellular Univariate Marginal Distribution Algorithm (CUMDANCauchy) [29] is a cellular 

EA that uses the Normal and Cauchy distributions to develop a new solution. To handle the 

uncertainty associated with DN resources, CUMDANCauchy++ is an upgrade to the prior 

technique. This algorithm initially generates a random solution randomly between the 

problem variable bounds. A number of parent solutions are also selected from the initial 

population generated where a learning process consisting of the estimation of the Normal 

and Cauchy distributions applied to the parent solutions which creates a new population. 

After a selection of individuals is made and the solution is updated consisting in  a 

mechanism of comparison of 𝑠𝑏𝑒𝑠𝑡 and 𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡, that is, if the fitness of 𝑥 individuals is 

less than the fitness of this 𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡, this parameter is then updated with the best value 

found in the fitness of these individuals. The described process of the optimization algorithm 

can be seen in Figure 5. 
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Figure 5 Flowchart of the CUMDANCauchy++ algorithm. 

This algorithm and some variants have been applied to the “WCCI/GECCO 2020 

Evolutionary Computation in Uncertain Environments: A Smart Grid Application" which 

consists of a ERM problem considering uncertainty [30] and presented impressive results 

when compared to other metaheuristics. 

2.1.5. HILL CLIMBING TO RING CELLULAR ENCODE-DECODE UMDA 

Hill Climbing to Ring Cellular Encode-Decode UMDA (HC2RCEDUMDA) is a brand-new 

algorithm first introduced in the "2021 Competition on Evolutionary Computation in the 

Energy Domain: Smart Grid Applications" [31] that combines hill climbing and a ring 

cellular encode-decode UMDA (RCEDUMDA) [32]. This algorithm uses a cellular 

estimation of distribution algorithm similar to CUMDANCauchy. The search space is 

reduced by transforming continuous variables to categorical variables and then inverting the 

process, basically using an encoding-decoding method. This algorithm also estimates a 
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univariate marginal distribution 𝑝(𝑥) = ∏ 𝑝(𝑥𝑖)
𝑙
𝑖=1  from the neighborhoods' best 

individuals. A scaling method is used for the 𝑝(𝑥𝑖) to generate new individuals according to 

the probability of distribution used. 

2.2. SMART GRID 

Today's electric power system is already an old and aging system that has difficulty meeting 

energy needs and will most likely not be able to efficiently withstand the high penetration of 

renewable resources. Among the many shortcomings of the traditional electrical grid are the 

lack of automated analysis, mechanical switches that cause slow response times or poor 

visibility [33]. 

The existing power grid at times of higher demand tends to become overloaded and can lead 

to congestion problems in the lines. The periods where this type of situations occurs are 

usually known (commonly between 6pm and 9pm) and it is possible to determine the level 

of these loads through historical data. With the proliferation of electrical devices and with 

the high penetration of EVs that is occurring and that will tend to increase in the coming 

years the demand for electricity will also register this increase [34]. Since there are no energy 

storage systems to store energy on a large scale yet, producers will have to increase 

electricity generation to meet the high demand.  

The continued integration of DER in the electricity grid, despite having certain advantages, 

such as the distributed generation (DG) that reduces losses in energy distribution, also brings 

serious problems for the traditional grid. One of the great disadvantages of this type of 

resource is the uncertainty associated with it, which can cause problems in voltage levels 

and frequency stability [35]. 

As such, the SG concept enters to make the electric grid more efficient and sustainable by 

promoting the integration of the previously mentioned resources. SG is an advanced digital 

power grid with a two-way power flow of electricity and information with adaptive, resilient, 

and sustainable capacities, capable of incorporating uncertainty associated with the DER 

[36].  

Compared to the traditional network, the SG encourages the use of information and 

communication technologies (ICT) using devices such as smart meters, sensors, among 
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others in order to increase network automation. This implementation makes the network 

more efficient in its operation due to the increase of information, which also makes the prices 

for the consumers of this network reduced due to the mechanisms, and models that surge to 

create greater stability in electricity production. Table 2 shows the comparison between a 

more traditional grid and the SG in terms of what each offers with its integration [37]. 

Table 2 Traditional electric grid versus the smart grid [37]. 

Traditional grid Smart grid 

Mechanization  Digitization 

One-way communication 
Two-way real-time 

communication 

Centralized power generation Distributed power generation 

Radial network Dispersed network 

Less data involved Large volumes of data involved 

Small number of sensors Many sensors and monitors 

Less or no automatic monitoring Great automatic monitors 

Manual control and recovery Automatic control and recovery 

Less security and privacy concerns 
Prone to security and privacy 

issues 

Human attention to system disruptions Adaptive protection 

Simultaneous production and consumption of 

energy/electricity 
Use of energy storage systems 

Limited control Extensive control system 

Slow response to emergencies Fast response to emergencies 

Fewer user choices Vast user choices 

For the implementation of this type of grid, it is necessary to take into consideration certain 

concepts. Reference [38] gives some examples to take into account like: optimal sizing and 

placement of distribution system resources, optimal resource dispatching, integrated load 

and generation forecast, reconfiguration of the DN, and the integration of static and dynamic 

storage resources in the resource dispatch, just to name a few. 

2.3. ELECTRIC VEHICLES 

EVs are appearing in ever-increasing numbers due to existing agreements [39] and massive 

investments [40] in order to minimize pollution mainly in the transport sector, which is one 
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of the main contributors for environmental issues with 16.2% of emissions [41]. Although 

this type of resource reduces environmental problems, its integration poses new challenges 

for the electric grid.  

According to [42] at the end of 2020, the EV stock in the world passed the 10 million mark, 

an increase of around 3 million units from 2019 as Figure 6 shows, with more than 6.8 

million battery EVs (BEVs), and 3.3 million plug-in hybrid EVs (PHEVs). One of the main 

contributors for the increase was Europe which had the highest increase out of all regions 

passing even China. Still, China remains the region with the highest stock of EVs in the 

world. Even in pandemic times the number of EVs increased significantly even compared to 

the increase from 2018 to 2019 which was only around 2.1 million. 

Reference [42] proposes two scenarios forecasting the number of EVs on the roads by 2030. 

The first scenario is the Stated Policies Scenario, which integrates current government 

policies, that forecasts the EV stock to reach 145 million in 2030. The Sustainable 

Development Scenario is the second proposed scenario and incorporates what was 

established in the Paris Agreement. This scenario predicts that by 2030 there will be an EV 

stock of 230 million. 

 

Figure 6 Number of electric cars in the major regions, 2010-20 [42]. 

With the statistics presented, the uncontrolled penetration of EVs could become a severe 

problem for the electric grid causing serious operational challenges, such as congestion and 

overloading for the grid. This situation is mainly caused by the uncertain pattern of these 
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vehicles' users when charging (dumb charging). It is necessary to take advantage of the 

opportunities that this type of resources brings. 

Figure 7 demonstrates the services provided by EVs at the transmission level, distribution 

level, and when it comes to renewables [43]. It is possible to observe that at distribution level 

DR programs (load shifting, peak shaving) can be implemented due to the high elasticity of 

EV load. 

 

Figure 7 EV services provided for different parties in power systems [43]. 

2.4. ENERGY RESOURCE MANAGEMENT 

Power grids evolve toward massively distributed electrical systems technologies with 

millions of nodes which are controllable. Transformative changes are taking place at the 

distribution stage, with the increasing integration of renewable technologies, energy storage 

systems (ESSs), and flexible loads such as EVs [44]. This demands that electric grids be 

modernized by operators and planners. The utility industry is investigating ways of 

exploiting DERs to boost network services, act as a catalyst for businesses at the delivery 

level and give clients innovative features. In this situation the energy resource management 

concept emerges to monitor and control these resources due to the uncertainty associated. 

Apart from the EVs another resource that will have a great increase is the PV production 
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[45]. Its high penetration in SGs also brings serious problems for the network's efficiency 

due to its volatility. Reference [46] presents a detailed analysis of both solar resource and 

PV power conceptual prediction techniques based on artificial intelligence (AI) with 

artificial neural networks (ANNs) being the main technique proposed. Also, 

implementations of these techniques in resource management in the SG concept are 

presented by the authors. 

The work in [47] presents a network reconfiguration strategy and an optimal DER 

management to increase the robustness of the electrical network. Both methodologies have 

been applied to two IEEE DNs of 69 buses and 123 buses respectively with high penetration 

of DER. The resource management problem served to reduce the cumulative costs associated 

with the operation of DER and a decrease in load. In [48] it is proposed that an aggregator 

optimizes the programming of resources, however as it seeks to increase its profits, the 

demand can be reduced completely. The authors propose two techniques for the optimization 

of operational costs. The first is a DR function that serves as a restriction so that demand is 

always met, the second technique being the 0-1 knapsack problem that stores energy and 

turns off loads according to the DR function. Both techniques show similar results in terms 

of load reduction, but the proposed DR function presents better optimization time. 

Reference [49] proposes an energy resource management system called Alternating 

Direction Method of the multiplier for the management of two controllers for a reduction of 

operational costs in a microgrid of 14 buses with high DG penetration. This scheduling was 

performed for a day-ahead time horizon and showed good results for islanded and grid-

connected modes. The work in [50] proposes an optimal day-ahead scheduling under 

uncertainty considering six periods of four hours each. This scheduling aims to minimize the 

operating costs of a microgrid and minimize air pollution rates. The microgrid considered 

integrates several resources such as traditional energy sources, combined heat and power 

(CHP) generation, renewables, ESSs, and portable renewable energy. Stochastic 

programming is used for the uncertainty, and Augmented Epsilon-constraint method is used 

to solve the optimization problem which shows effective results. In [51] an energy 

management system is proposed for a network of microgrids, like Figure 8 shows. The 

energy resource management system considers a DR program for a better efficiency in the 

operation of the microgrids network, which is verified in a better stability and reduction in 

operational costs. Microgrids have a high DG penetration and flexible loads. To address the 
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uncertainty of these resources, the authors have created multiple scenarios. Resources were 

scheduled for a 24-hour time horizon, i.e., a day-ahead scheduling. 

 

Figure 8 Structure of the proposed energy management for a network of microgrids [51]. 

As described previously, energy resource management is a concept that should be considered 

soon, given the high penetration of DER that will occur. This management allows a better 

efficiency in the operation of the electrical network which means a reduction in costs for the 

end-user. As these customers do not have the knowledge to make this management or 

because they are not interested there is an increase in tariffs that they receive. Here comes 

the concept of aggregator, which will seek to establish contracts with several customers and 

as such, it will make this resource management seeking to obtain profits. By carrying out 

this management of resources, a better quality of service to the end-user is provided since 

network efficiency improves; that is, it will pay more for this service. But by existing 
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competition in this situation, retailers and other entities will be forced to give a better service 

to the end-user or reduce electricity costs. 

2.5. DEMAND RESPONSE AND ELECTRIC VEHICLE FLEXIBILITY 

DR programs can be considered with incentives for electricity users to reprogram their 

consumption patterns to improve grid efficiency [52]. 

Reference [53] separates DR programs in three different categories. The first category is the 

DR based on control mechanisms, centralized in which the users communicate, without 

interactions, directly with the power utility, and distributed mechanisms in which the users 

interact with each other. The second scheme is DR based on offered motivations. These 

schemes encompass price-based and incentive-based mechanisms. These two mechanisms 

are further explained in this section. Finally, the authors consider DR based on a decision 

variable scheme, which includes task scheduling-based DR and energy management-based 

DR. The first mechanism refers to controlling the activation time of the requested load, being 

able to decrease this time in peak consumption hours. The second mechanism is related to 

the reduction of specific load consumption. 

Price-based DR is implemented through approved utility tariffs or contractual appointments 

in deregulated markets according to which the price of electricity varies over time so 

customers can adjust their load patterns. Incentive-based DR rewards customers for reducing 

their electric loads upon request or for giving the program administrator some level of 

control over the customer's electricity-using equipment. In this model, an encouragement 

exists by incentive payments to end-users due to their participation in the DR programs. 

In this context EVs bring a high elasticity in their load, also known as EV flexibility. This 

flexibility allows the EV user to shift or reduce the vehicle's load consumption and even, in 

some cases, inject energy back to the grid. Several studies have emerged on this topic. The 

work in [54] proposes three business models for the flexibility of EVs. In the first business 

model, the service provider is the EV aggregator, and the customer is the DSO, the product 

being flexibility. The second business model makes the DSO the provider of this flexibility, 

the EV user, and the customer once again the DSO. The EV flexibility is traded in a 

marketplace. The final proposed model by this reference sees the EV aggregator requesting 

flexibility from the EV users, according to the amount sold by the aggregator to the DSO. In 
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[55] is considered a system with slow charging at home and fast-charging stations with and 

without batteries. The proposed mixed-integer linear programming unit commitment model 

finds an optimal time window to take advantage of EVs' high flexibility so that the problems 

caused by uncontrolled fast charging can be mitigated. 

Considering this flexibility, the DR programs described above come in the EVs a huge 

applicability due to their elasticity. As such, several models of DR shaped for EVs appear. 

In this section two incentive-based programs specific for EVs are presented, smart charging 

(SC) and vehicle-to-grid (V2G). 

2.5.1. SMART CHARGING 

Uncontrolled charging of EVs (dumb charge) can cause problems for the proper operation 

of the network. This type of charging brings problems for the DSO, as the last will have to 

make significant investments to strengthen the network to satisfy the high energy demand 

that will arise. To mitigate these problems, the EV users need to adhere to a controlled 

charging, such as SC. 

In this charging, the EV and the charging device must rely on minimum data exchanges. 

This data will then be shared to the charging station operator through the cloud as shown in 

Figure 9 [56]. Through SC, the charging stations can monitor, manage, and even restrict 

vehicles' charging to optimize energy consumption. EV users will participate in this type of 

charging, switching from dumb charging, due to economic incentives and convenience of 

charging.  

Reference [57] presents an optimal day-ahead and real-time planning for smart charging. It 

combines both day-ahead planning with real-time coordination. By combining these two-

time horizons, an improvement of grid stability and minimization of operational costs is 

achieved. The work in [58] proposes a utility model for joint EV user activity-travel 

scheduling and charging choices. This model considers the nuances of the EV user charging 

behavior. It concluded that service providers should consider incentive flexible charging 

behavior for their revenue management strategies. 
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Figure 9 Typical data flow for a smart charging service [56]. 

2.5.2. VEHICLE-TO-GRID 

The V2G strategy refers to when the EV becomes a load and a source of energy, i.e., it injects 

energy back into the grid when connected to it. It can help mitigate congestion problems 

because, with this technology, the vehicle can discharge the energy stored back to the grid 

during peak-hours and charge during off-peak hours [59]. Figure 10 shows a typical V2G 

architecture where the EV through an EV aggregator or an independent system operator 

(ISO) starts to work as an energy source, injecting power back to the grid with bidirectional 

power flow to supply service buildings or residential buildings when the demand is too high 

[60]. This mechanism is achieved with smart communication between all the involved 

players. 

A significant drawback to implementing this type of model is that EV batteries will suffer a 

more significant degradation due to the constant switches between charging and discharging 

[61]. Due to this degradation, the incentive for EV owners must be higher than in other DR 

models. Because battery technology is not yet developed enough for this type of technology, 

this mode is seen in a low number of EVs. Even despite this technology being in such few 

EVs, several studies and surveys have been conducted to understand the benefits provided 

by V2G [62], [63]. 
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Figure 10 Example of a V2G system (adapted from [60]). 

2.6. LOCAL ELECTRICITY MARKETS 

Till recent times the electricity has been sold, bought, and traded in three different types of 

markets in a more liberalized way, as Figure 11 shows, wholesale (WS) market, balancing 

market, and retail market [64]. In the WS, energy is bought and sold to retailers or resellers, 

i.e., generation companies compete to sell electricity to buyers. In the retail market, there is 

the purchase and sale of energy to final consumers. The balancing market operated by the 

TSO that adjusts the supply/demand to balance the system to alleviate transmission issues. 

With the enormous penetration that is occurring and will continue to occur from DER. This 

type of penetration, the increase in demand for energy, a more customer-oriented market and 

the existence of prosumers (both consumers and producers) presents great challenges for 

existing markets [65]. This type of market is not fully designed for the integration of these 

resources, which leads to a decrease in the quality of electricity [66]. New market 

mechanisms emerge to deal with these challenges. The local electricity market (LEM) is a 

market that serves to exchange electricity that is produced and consumed in a neighborhood, 

that is, locally [67]. In this case, these exchanges make it possible to reduce existing losses 

during the transmission of energy on distribution lines, thus increasing the quality of energy. 

The LEMs, as they allow interaction between various players, give electricity producers an 

opportunity to increase their profits when selling electricity. This is not the case in the 
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existing types of markets, as the excess electricity that is injected into the grid offers a low, 

sometimes zero remuneration for these individuals. 

 

Figure 11 Electricity tradings in liberalised electricity markets [64]. 

Reference [68] proposes a communication system between the central electricity market 

(CEM), and renewable energy sources (RES) with the LEM as an intermediary between the 

two as Figure 12 shows. The authors in this paper also give three different coordination 

schemes between the LEM, and CEM. The first scheme is the DSO leader strategy, with a 

non-strategic DSO, and a strategic DSO. Non-strategic DSO is where the DSO has priority 

over the TSO, where he clears the LEM, allocates the flexible resources, and if demand is 

not fulfilled or the other way around (supply is not consumed) the DSO imports/exports that 

electricity. In strategic DSO, the DSO becomes the only aggregator in the DN which gives 

the DSO great market capacity which may cause competitive problems. The following 

scheme is the DSO follower, where the CEM has now the priority over the LEM fixing the 

prices or quantity of the power in the connection point between the transmission and 

distribution grids. The final coordination strategy is the TSO-DSO iteration where a 

coordination mechanism through iteratively communicating the generalized bid function for 

coordinating the economic dispatch of TSO and DSO. 
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Figure 12 Market framework with local and central electricity and ancillary service market 

[68]. 

The paper in [3] presents a fully transactive energy system, integrating both WS market, and 

LEM. The authors start to solve the day-ahead energy resource management in the microgrid 

considering flexible loads (EVs, Energy Storage Systems (ESSs), DR) and market share. A 

WS market and a LEM are also shaped, as shown in Figure 13, considering uncertainty in 

the scenario generated, and bidding options in both domestic and WS markets. The 

management problem was solved using a two-stage stochastic model. In the first stage, the 

WS and LEM offers, as well as the dispatchable DG, are considered and in the second- stage, 

all the uncertainties are considered (EVs, ESSs, DR, etc.). Due to the uncertainty associated 

with some resources a Monte Carlo Simulation was applied to generate several scenarios 

using a probability distribution function (normal distribution). Then a scenario reduction 

technique was applied for each situation to aggregate those with similar characteristics, and 

to eliminate those with a low probability of occurrence. Finally, this paper analyzes the cost 

using three different scenarios: no market participation, only WS market participation and 
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the combination of the WS and LEM, using flexibility in the load and no flexibility. As 

expected, the best results are obtained when the simulations consider the two markets, 

together with flexible loads. This paper includes EVs as flexible loads, which proves that 

their integration into LEMs is an added value for cost reduction. 

 

Figure 13 Wholesale and local market modulation (adapted from [3]). 

The LEM then promotes the integration of the EVs. The product considered in local 

transactions is the flexibility of these vehicles. This flexibility can be transacted by an EV 

aggregator to the DSO for example, and the aggregator will request this flexibility from the 

EV user through monetary incentives. The interaction between these two entities is also 

provided by the LEMs. 
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The work in [69] shows new LM designs in a German case study. Due to the German 

regulations in this country the implementation of the current LMs designs brings 

unappealing financial profits to consumers and prosumers. The proposed model is 

formulated as a mixed complementary problem simulating a community of market players 

such as consumers, and prosumers.  The authors propose a design that shows great potential 

to mitigate the effects of energy distribution, avoidance of system service charges, and end-

user participation increase as the results show. 

In [70] an optimal simulation of peer-to-peer business models for PV prosumers in a Swedish 

case study is presented. Simulations consider multiple ownership structures between players. 

This first structure is the local energy provider (LEP) where only one agent is the producer, 

and the others are simply consumers. The second proposed structure is the local energy 

community (LEC) where a communal plant is shared among all players or a selected group. 

The final is the LEM where multiple producers, consumers, and prosumers are considered 

increasing the structures complexity. The authors also proposed three business models 

incorporated in these ownership structures. The first one is called the LEC gratis where the 

electricity from the communal PV plant is given for free when available. LEC LCOE is 

where the electricity in the communal plant is set at production cost, and the obtained 

revenues are equally shared between shareholders. The final business model is the LEP n% 

and says that the single energy provider can set the prices within bounds. Results show that 

the PV prosumers achieve a great self-sufficiency in the considered models. 

2.7. VALUE-AT-RISK 

VaR is a concept widely used in economics to measure the risk of investment; that is, this 

parameter is a statistical mechanism that allows measuring the losses associated with a 

portfolio over a period of time for a given confidence level [71]. This parameter enables an 

excellent solution to be guaranteed in the occurrence of extreme scenarios, that is, scenarios 

with a high variation in characteristics and a low probability of occurrence [72]. 

Although VaR is a good tool for risk analysis, it has one major drawback in its 

implementation, which is the occurrence of these extreme scenarios beyond the confidence 

level. In this situation, the concept of CVaR which is an extension of VaR that allows 

evaluating the risk when the least likely scenarios occur beyond the confidence level [73]. 
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This method presents greater security, which comes at a higher cost. The optimization 

implicit in this concept is a form of Pareto optimization with two objectives, the return, 

which in the case of this thesis is the aggregator costs, and the inherent risk. 

Although this concept is widely associated with the economy and its aspects, it has begun to 

be implemented in the field of electric power systems. In [74], a smart energy hub model is 

proposed for a real case study incorporating different scenarios. This framework includes 

the uncertainty of natural-gas prices and electricity demand. A CVaR mechanism is applied 

to reduce the operational costs in the worst scenarios, that is, to control the operational risk 

of the system. Reference [75] presents a risk-averse strategy for microgrid planning. A two-

stage stochastic approach is used for the planning of the different technologies incorporated 

in the microgrid with a mean-variance method to assess the risk. An optimal bidding 

framework for clusters of prosumers to maximize profits is proposed in [76]. A bi-level 

formulation is presented where the upper level is the maximization of profits when market 

trading in the day-ahead while the lower-lever intends to minimize energy costs of the 

prosumers. A CVaR mechanism is implemented to measure the risk associated with the 

energy sharing between prosumers and the day-ahead market prices. 

2.8. CHAPTER CONCLUSIONS 

In this chapter, several topics were presented that demonstrate relevance in consolidating the 

concept of energy resource management for DERs, especially EVs in an SG concept.First, 

contextualization of the various algorithms based on AI with a focus on EAs, especially 

HyDE-DF, which is adopted in this work. HyDE-DF was chosen due to its adaptive 

characteristics. The crossover and scaling parameters change according to the search 

performed by the algorithm. The desired algorithm also has good exploration and 

exploitation processes, as described, which is a plus for the intended purpose. Next, the SG 

concept was presented, and several statistics were presented that prove the increase and the 

challenges that the integration of EVs brings to the electrical grid. Energy resource 

management was another of the themes approached, presenting several works developed for 

the concept. The concepts of DR and EV flexibility were also discussed, as well as local 

transactions and their importance. It was then possible to conclude from the research carried 

out that the SG concept allows the electrical network to better manage DERs, such as 

renewables and EVs. This management is performed through optimization algorithms that 
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obtain optimal scheduling of resources. This situation allows the minimization of electric 

network operational costs and reduction of congestion problems. This decrease is greater by 

implementing mechanisms of DR and local transactions. The concepts of VaR and CVaR 

were also studied. These concepts allow dealing with the inherent uncertainty in the problem 

and obtaining a solution that offers robustness and security in the results regarding the 

scenarios that represent the uncertainty of energy resource scheduling with the least possible 

risk when faced with the various scenarios considered. In the next chapter, the formulation 

for optimal resource management is proposed, considering the methodology adopted by 

multiple metaheuristics presented here. Concepts such as LEM transactions are also applied, 

and a formulation with risk assessment mechanisms is made to guarantee a more robust 

solution. 
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3. METHODOLOGY 

This section presents the proposed methodology for the mathematical formulation, algorithm 

optimization, and uncertainty generation for the ERM problem in the day-ahead, intraday 

optimization, and a risk-based formulation for the day-ahead ERM.  

3.1. ENERGY RESOURCE SCHEDULING FORMULATION 

The proposed model for the optimization of the ERM problem on intraday starts by initially 

performing the day-ahead resource scheduling, as this solution is necessary for the hour-

ahead model. As such, the day-ahead resource scheduling model is shown in Figure 14. 

For the multiple aggregators to be able to perform day ahead ERM, it is necessary to acquire 

technical data for the various technologies associated with them. The technical data includes 

the distributed generation needed for the renewable generation aggregator load and DR 

contracts for the load aggregators, EV data for the EV aggregator, and other shared resources 

that all aggregators have access to. The forecasted data of uncertain resources is necessary 

for the model, as Figure 14 presents, generated through a set of scenarios. The dedicated 

energy resources are then managed for the next 24 hours by these aggregators. 
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Figure 14 Day-ahead ERM model. 

Regarding to the mathematical formulation of the day-ahead ERM for the multiple 

aggregators considering what is proposed in (3) and (4), the terms of the total costs in each 

scenario 𝑠 can be given by: 

𝑍𝑂𝐶
𝑠 = ∑[ ∑ 𝑃𝐷𝐺(𝑖,𝑡) ⋅ 𝐶𝐷𝐺(𝑖,𝑡)

𝑖∈Ω𝐷𝐺
𝑑

+ ∑ 𝑃𝑒𝑥𝑡(𝑘,𝑡) ⋅ 𝐶𝑒𝑥𝑡(𝑘,𝑡)

𝑁𝑘

𝑘=1

] ⋅ ∆𝑡

𝑇

𝑡=1

+ ∑

[
 
 
 
 
 
 
 
 
 

∑ 𝑃𝐷𝐺(𝑖,𝑡,𝑠) ⋅ 𝐶𝐷𝐺(𝑖,𝑡)

𝑖∈Ω𝐷𝐺
𝑛𝑑

+ ∑ 𝑃𝐷𝑖𝑠𝑐ℎ(𝑒,𝑡,𝑠) ⋅ 𝐶𝐷𝑖𝑠𝑐ℎ(𝑒,𝑡)

𝑁𝑒

𝑒=1

+

∑𝐸𝑉𝐷𝑖𝑠𝑐ℎ(𝑣,𝑡,𝑠) ⋅ 𝐸𝑉𝐶𝐷𝑖𝑠𝑐ℎ(𝑣,𝑡) + ∑𝑃𝑐𝑢𝑟𝑡(𝑙,𝑡,𝑠)

𝑁𝑙

𝑙=1

𝑁𝑣

𝑣=1

⋅ 𝐶𝑐𝑢𝑟𝑡(𝑙,𝑡) +

∑𝑃𝐸𝑁𝑆(𝑟,𝑡,𝑠) ⋅ 𝐶𝐸𝑁𝑆(𝑟,𝑡) + ∑𝑃𝐺𝐶𝑃(𝑖,𝑡,𝑠) ⋅ 𝐶𝐺𝐶𝑃(𝑖,𝑡)

𝑁𝑖

𝑖=1

𝑁𝑟

𝑟=1 ]
 
 
 
 
 
 
 
 
 

𝑇

𝑡=1

⋅ ∆𝑡   ∀𝑠. 

(3) 

𝑍𝐼𝑛
𝑠 = ∑[∑(𝑃𝐵𝑢𝑦(𝑚,𝑡) − 𝑃𝑆𝑒𝑙𝑙(𝑚,𝑡)) ⋅ 𝑀𝑃(𝑚,𝑡,𝑠)

𝑁𝑚

𝑚=1

]

𝑇

𝑡=1

⋅ ∆𝑡   ∀𝑠. 

(4) 

In (3) and (4), the total number of periods is represented by the symbol 𝑇, the set of 

dispatchable generation is referred to as Ω𝐷𝐺
𝑑 . The number of external suppliers is given as 

𝑁𝑘 and the total number of scenarios is 𝑁𝑠. 𝑁𝑒 represents the number of ESSs. The number 

of EVs is called 𝑁𝑣, and the number of loads is 𝑁𝑙. 𝑁𝑟 represents the number of resources 

where energy is not supplied (ENS), and 𝑁𝑖 is the number of distributed generators. The 



33 

  

symbol 𝑁𝑚 denotes the number of WS markets. The active power generation is given by 

𝑃𝐷𝐺  (MW), 𝑃𝑒𝑥𝑡 is the external power supplied (MW). 𝑃𝐷𝑖𝑠𝑐ℎ represents the ESS power 

discharge (MW), 𝐸𝑉𝐷𝑖𝑠𝑐ℎ is the EV discharge power (MW). The power reduction of load 𝑙 

is given by 𝑃𝑐𝑢𝑟𝑡 (MW), 𝑃𝐸𝑁𝑆 represents the non-supplied demand, in periods 𝑡 of resource 

𝑟 (MW), and the excess of DG units' 𝑖 generation is 𝑃𝐺𝐶𝑃 (MW). 𝑃𝐵𝑢𝑦 represents power 

purchased from the market (MW), 𝑃𝑆𝑒𝑙𝑙 represents power sold to the market (MW). 𝐶𝐷𝐺 

represents the cost of distributed generation (m.u./MWh), 𝐶𝑒𝑥𝑡 represents the cost of an 

external supplier (m.u./MWh), and 𝐶𝐷𝑖𝑠𝑐ℎ represents the cost of ESS discharging 

(m.u./MWh). The cost of EV discharge is 𝐸𝑉𝐶𝐷𝑖𝑠𝑐ℎ (m.u./MWh), and the load curtailment 

cost is 𝐶𝑐𝑢𝑟𝑡 (m.u./MWh). The cost of energy not supplied (ENS) is represented by 𝐶𝐸𝑁𝑆 

(m.u./MWh), whereas the penalty for excess energy is represented by 𝐶𝐺𝐶𝑃 (m.u./MWh). 

The WS electricity market price is 𝑀𝑃 (m.u./MWh). ∆𝑡 is the time step which in this case 

corresponds to 1 hour. 

The optimization algorithms try to find a global minimum of the expected cost as it is 

described in (38). It's worth noting that each aggregator is in charge of a specific service in 

the DN; as a result, certain parameters of (3) become zero and disappear depending on the 

aggregator's energy resources. For the proposed load aggregators, the EV term and 

renewable energy term disappear. For the renewable generation aggregator, the EV term and 

load curtailment cost term disappear, and for the EV aggregator the terms involving non-

dispatchable generation, and load reduction become zero. 

The objective function (OF) of the scheduling problem (equations (3)-(4)) is subject to 

certain restrictions. The constraints are as follows: 

Active power balance constraint: In each period 𝑡 the generation must be equal to the 

consumption for each scenario 𝑠: 

[
 
 
 
 
 
 
 
 
 

∑ 𝑃𝐷𝐺(𝑖,𝑡)

𝑖∈𝛺𝐷𝐺
𝑑

+ ∑ 𝑃𝑒𝑥𝑡(𝑘,𝑡)

𝑁𝑘

𝑘=1

+ ∑ (𝑃𝐷𝐺(𝑖,𝑡,𝑠) − 𝑃𝐺𝐶𝑃(𝑖,𝑡,𝑠))

𝑖∈𝛺𝐷𝐺
𝑛𝑑

+

∑ 𝑃𝐸𝑁𝑆(𝑟,𝑡,𝑠) +

𝑁𝑟

𝑟=1

∑(𝑃𝑐𝑢𝑟𝑡(𝑙,𝑡,𝑠) − 𝑃𝑙𝑜𝑎𝑑(𝑙,𝑡,𝑠))

𝑁𝑙

𝑙=1

+ ∑(𝑃𝐷𝑖𝑠𝑐ℎ(𝑒,𝑡,𝑠) − 𝑃𝐶ℎ𝑎𝑟(𝑒,𝑡,𝑠))

𝑁𝑒

𝑒=1

+

∑(𝐸𝑉𝐷𝑖𝑠𝑐ℎ(𝑣,𝑡,𝑠) − 𝐸𝑉𝐶ℎ𝑎𝑟(𝑣,𝑡,𝑠))

𝑁𝑣

𝑣=1

− ∑(𝑃𝐵𝑢𝑦(𝑚,𝑡) − 𝑃𝑆𝑒𝑙𝑙(𝑚,𝑡))

𝑁𝑚

𝑚=1 ]
 
 
 
 
 
 
 
 
 

=  0    ∀𝑡, ∀𝑠. 

(5) 
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Where 𝑃𝑙𝑜𝑎𝑑 is the forecasted active power of the loads (MW), 𝑃𝐶ℎ𝑎𝑟 represents the ESS 

charging power (MW), and 𝐸𝑉𝐶ℎ𝑎𝑟 is the EV charging power (MW).   Since 𝑃𝐸𝑁𝑆 and 𝑃𝐺𝐶𝑃 

represent the penalties if (5) is not met. In this situation a special weight is given to these 

parameters otherwise a penalty of 100 m.u. per period is added to (3) in the terms associated 

with the imbalances. Depending on the aggregator, some of these terms are zero like in (3). 

Power generation constraints: Maximum and minimum limits for active power generation 

in each period 𝑡 is as follows: 

𝑃𝐷𝐺𝑚𝑖𝑛(𝑖,𝑡) ⋅ 𝑥𝐷𝐺(𝑖,𝑡) ≤ 𝑃𝐷𝐺(𝑖,𝑡)     ∀𝑖 ∈ Ω𝐷𝐺
𝑑 , ∀𝑡. (6) 

𝑃𝐷𝐺(𝑖,𝑡) ≤ 𝑃𝐷𝐺𝑚𝑎𝑥(𝑖,𝑡) ⋅ 𝑥𝐷𝐺(𝑖,𝑡)     ∀𝑖 ∈ Ω𝐷𝐺
𝑑 , ∀𝑡. (7) 

The external supplier maximum and minimum limits in each period 𝑡 can be modeled as: 

𝑃𝑒𝑥𝑡𝑚𝑖𝑛(𝑘,𝑡) ⋅ 𝑥𝑒𝑥𝑡(𝑘,𝑡) ≤ 𝑃𝑒𝑥𝑡(𝑘,𝑡)     ∀𝑘, ∀𝑡. (8) 

𝑃𝑒𝑥𝑡(𝑘,𝑡) ≤ 𝑃𝑒𝑥𝑡𝑚𝑎𝑥(𝑘,𝑡) ⋅ 𝑥𝑒𝑥𝑡(𝑘,𝑡)     ∀𝑘, ∀𝑡. (9) 

The non-dispatchable generation formulated according to each scenario 𝑠: 

𝑃𝐷𝐺(𝑖,𝑡,𝑠) = 𝑃𝐷𝐺𝑛𝑑(𝑖,𝑡,𝑠) ⋅ 𝑥𝐷𝐺(𝑖,𝑡)     ∀𝑖 ∈ Ω𝐷𝐺
𝑛𝑑 , ∀𝑡, ∀𝑠. (10) 

Where 𝑃𝐷𝐺𝑚𝑖𝑛 is the minimum active power of dispatchable generation unit 𝑖 in period 𝑡 

(MW), 𝑃𝐷𝐺𝑚𝑎𝑥 is the maximum active power of dispatchable generation unit 𝑖 in period 𝑡 

(MW). The minimum and maximum active power generation of external supplier unit 𝑘 in 

period 𝑡 are represented by 𝑃𝑒𝑥𝑡𝑚𝑖𝑛(MW), and 𝑃𝑒𝑥𝑡𝑚𝑎𝑥 (MW) respectively. 𝑃𝐷𝐺𝑛𝑑
 is the 

forecasted renewable generation power of non-dispatchable generation unit 𝑖 in period 𝑡 

(MW). The binary variables representing the state of DG, and external supplier units is given 

by 𝑥𝐷𝐺 , and 𝑥𝑒𝑥𝑡 respectively. The renewable generation aggregator is the only aggregator 

subject to constraint (10). 

Energy storage system constraints: The battery balance constraint for each ESS unit is 

defined as follows: 

𝐸𝑠𝑡𝑜𝑟𝑒𝑑(𝑒,𝑡,𝑠) = 𝐸𝑠𝑡𝑜𝑟𝑒𝑑(𝑒,𝑡−1,𝑠) + 𝜂𝑐(𝑒) ⋅ 𝑃𝐶ℎ𝑎𝑟(𝑒,𝑡,𝑠) ⋅ ∆𝑡 − 
1

𝜂𝑑(𝑒)
⋅ 𝑃𝐷𝑖𝑠𝑐ℎ(𝑒,𝑡,𝑠) ⋅ ∆𝑡     ∀𝑒, ∀𝑡, ∀𝑠. 

(11) 

The maximum discharge and charge limits for each ESS unit can be formulated as: 
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𝑃𝐷𝑖𝑠𝑐ℎ(𝑒,𝑡,𝑠) ≤ 𝑃𝐷𝑖𝑠𝑐ℎ𝑚𝑎𝑥(𝑒,𝑡)     ∀𝑒, ∀𝑡, ∀𝑠. (12) 

𝑃𝐶ℎ𝑎𝑟(𝑒,𝑡,𝑠) ≤ 𝑃𝐶ℎ𝑎𝑟𝑚𝑎𝑥(𝑒,𝑡)     ∀𝑒, ∀𝑡, ∀𝑠. (13) 

The maximum battery capacity limit for each ESS unit can be written as: 

𝐸𝑠𝑡𝑜𝑟𝑒𝑑(𝑒,𝑡,𝑠) ≤ 𝐸𝐵𝑎𝑡𝐶𝑎𝑝(𝑒)     ∀𝑒, ∀𝑡, ∀𝑠. (14) 

The minimum energy stored required to be guaranteed at the end of period 𝑡 can be modeled 

as: 

𝐸𝑠𝑡𝑜𝑟𝑒𝑑(𝑒,𝑡,𝑠) ≥ 𝐸𝑀𝑖𝑛𝐶ℎ𝑎𝑟𝑔𝑒(𝑒,𝑡)     ∀𝑒, ∀𝑡, ∀𝑠. (15) 

Where 𝐸𝑠𝑡𝑜𝑟𝑒𝑑 is the energy stored in each ESS unit 𝑒 in period 𝑡 for scenario 𝑠 (MWh). The 

charging efficiency and discharging efficiency of ESS unit 𝑒 is given by 𝜂𝑐(𝑒), and 𝜂𝑑(𝑒) (%). 

𝑃𝐷𝑖𝑠𝑐ℎ𝑚𝑎𝑥 is the maximum active discharge rate of ESS 𝑒 in period 𝑡 (MWh), 𝑃𝐶ℎ𝑎𝑟𝑚𝑎𝑥 is 

the maximum active charge rate of ESS 𝑒 in period 𝑡 (MWh). 𝐸𝐵𝑎𝑡𝐶𝑎𝑝 is the maximum 

energy capacity allowed by ESS 𝑒 (MWh), and 𝐸𝑀𝑖𝑛𝐶ℎ𝑎𝑟𝑔𝑒 minimum energy stored required 

in ESS unit 𝑒 in period 𝑡 (MWh). 

Electric vehicle constraints: The constraints for the EVs are similar to the ESSs because 

EVs are considered as virtual batteries. The battery balance constraint of each individual EV 

is formulated as follows: 

𝐸𝑠𝑡𝑜𝑟𝑒𝑑(𝑣,𝑡,𝑠) = 𝐸𝑠𝑡𝑜𝑟𝑒𝑑(𝑣,𝑡−1,𝑠) + 𝜂𝑐(𝑣) ⋅ 𝐸𝑉𝐶ℎ𝑎𝑟(𝑣,𝑡,𝑠) ⋅ ∆𝑡 − 
1

𝜂𝑑(𝑣)
⋅ 𝐸𝑉𝐷𝑖𝑠𝑐ℎ(𝑣,𝑡,𝑠) ⋅ ∆𝑡   ∀𝑣, ∀𝑡, ∀𝑠. 

(16) 

The discharging and charging limits for each EV are represented by the following: 

𝐸𝑉𝐷𝑖𝑠𝑐ℎ(𝑣,𝑡,𝑠) ≤ 𝐸𝑉𝐷𝑖𝑠𝑐ℎ𝑚𝑎𝑥(𝑣,𝑡)     ∀𝑣, ∀𝑡, ∀𝑠. (17) 

𝐸𝑉𝐶ℎ𝑎𝑟(𝑣,𝑡,𝑠) ≤ 𝐸𝑉𝐶ℎ𝑎𝑟𝑚𝑎𝑥(𝑣,𝑡)     ∀𝑣, ∀𝑡, ∀𝑠. (18) 

The maximum battery capacity limit for each EV unit is given by: 

𝐸𝑠𝑡𝑜𝑟𝑒𝑑(𝑣,𝑡,𝑠) ≤ 𝐸𝐵𝑎𝑡𝐶𝑎𝑝(𝑣)     ∀𝑣, ∀𝑡, ∀𝑠. (19) 

The minimum energy stored required to be guaranteed at the end of period 𝑡 for each EV 

can be defined as: 

𝐸𝑠𝑡𝑜𝑟𝑒𝑑(𝑣,𝑡,𝑠) ≥ 𝐸𝑀𝑖𝑛𝐶ℎ𝑎𝑟𝑔𝑒(𝑣,𝑡)     ∀𝑣, ∀𝑡, ∀𝑠. (20) 
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Where 𝐸𝑠𝑡𝑜𝑟𝑒𝑑 is the energy stored in each EV unit 𝑒 in period 𝑡 for scenario 𝑠 (MWh). The 

charging efficiency and discharging efficiency of EV unit 𝑣 is given by 𝜂𝑐(𝑣), and 𝜂𝑑(𝑣) (%). 

𝐸𝑉𝐷𝑖𝑠𝑐ℎ𝑚𝑎𝑥 is the maximum active discharge rate of EV 𝑣 in period 𝑡 (MWh), 𝐸𝑉𝐶ℎ𝑎𝑟𝑚𝑎𝑥 is 

the maximum active charge rate of ESS 𝑣 in period 𝑡 (MWh). 𝐸𝐵𝑎𝑡𝐶𝑎𝑝 is the maximum 

energy capacity allowed by ESS 𝑣 (MWh), and 𝐸𝑀𝑖𝑛𝐶ℎ𝑎𝑟𝑔𝑒 minimum energy stored required 

in ESS unit 𝑣 in period 𝑡 (MWh). The constraints (16)-(20) only apply to the EV aggregator, 

for the remaining all values are set to zero. 

Demand response constraints: The demand response model, namely direct load control 

where consumption is reduced by the end-user in exchange for an incentive. The maximum 

amount of load that can be reduced can be formulated as: 

𝑃𝑐𝑢𝑟𝑡(𝑙,𝑡,𝑠) ≤ 𝑃𝐷𝑅𝑚𝑎𝑥(𝑙,𝑡)     ∀𝑙, ∀𝑡, ∀𝑠. (21) 

Where 𝑃𝐷𝑅𝑚𝑎𝑥 is the maximum limit of active power reduction in load 𝑙 for period 𝑡. The 

three proposed aggregators are the ones affected by (21). 

Electricity market constraints: The WS electricity market is the only assumed existing 

market in the day-ahead problem. The maximum and minimum amounts of energy that can 

be bought and sold in the electricity market are given by: 

𝑃𝑆𝑒𝑙𝑙(𝑚,𝑡) ≥ 𝑃𝑆𝑒𝑙𝑙𝑚𝑖𝑛(𝑚,𝑡) ⋅ 𝑥𝑆𝑒𝑙𝑙(𝑚,𝑡)     ∀𝑚, ∀𝑡. (22) 

𝑃𝑆𝑒𝑙𝑙(𝑚,𝑡) ≤ 𝑃𝑆𝑒𝑙𝑙𝑚𝑎𝑥(𝑚,𝑡) ⋅ 𝑥𝑆𝑒𝑙𝑙(𝑚,𝑡)     ∀𝑚, ∀𝑡. (23) 

𝑃𝐵𝑢𝑦(𝑚,𝑡) ≥ 𝑃𝐵𝑢𝑦𝑚𝑖𝑛(𝑚,𝑡) ⋅ 𝑥𝐵𝑢𝑦(𝑚,𝑡)     ∀𝑚, ∀𝑡. (24) 

𝑃𝐵𝑢𝑦(𝑚,𝑡) ≤ 𝑃𝐵𝑢𝑦𝑚𝑎𝑥(𝑚,𝑡) ⋅ 𝑥𝐵𝑢𝑦(𝑚,𝑡)     ∀𝑚, ∀𝑡. (25) 

Where 𝑃𝑆𝑒𝑙𝑙𝑚𝑖𝑛 and 𝑃𝑆𝑒𝑙𝑙𝑚𝑎𝑥 are the minimum and maximum limits of energy offers in 

market 𝑚 for period 𝑡. 𝑃𝐵𝑢𝑦𝑚𝑖𝑛 and 𝑃𝐵𝑢𝑦𝑚𝑎𝑥 are the minimum and maximum limits of 

energy bids in 𝑚 for period 𝑡. The state of market sell/buy is given by the two binary 

variables 𝑥𝑆𝑒𝑙𝑙, and 𝑥𝐵𝑢𝑦 respectively. The action of selling and buying energy in the market 

cannot be made simultaneously, so an additional constraint is proposed where: 

𝑥𝑆𝑒𝑙𝑙(𝑚,𝑡) + 𝑥𝐵𝑢𝑦(𝑚,𝑡) ≤ 1     ∀𝑚, ∀𝑡. (26) 

When it comes to the intraday methodology Figure 15 depicts a resource schedule planning 

diagram in the hour-ahead sense. The technical data acquired for each aggregator is similar 



37 

  

to the day-ahead model but in this case with a 1-hour resolution with periods of 15 minutes. 

The hour-ahead ERM model requires data and contracts closed in the day-ahead time 

horizon, which is injected into the intraday model. In this case the energy contracted to the 

external supplier, and the WS market energy bought/sold in the day-ahead. The level of 

charge (SoC) of the EV and energy storage systems (ESSs) of the hour h-1, in the last period 

of 15 minutes is supplied as the initial SoC of the hour h (first 15-minute period) for the 

following four-time slots (h+1), with a 15-minute time slot resolution. 

 

Figure 15 Hour-ahead ERM model. 

The mathematical formulation for the intraday ERM problem is somewhat similar to the 

day-ahead formulation, but here the time step (∆𝑡) is equal to 15 minutes which corresponds 

to 
1

4
 of an hour. The LEM is also introduced in this model for energy transactions to meet the 

active power balance constraint. In this case, (4) is reformulated as: 

𝑍𝐼𝑛
𝑠 = ∑

[
 
 
 
 
 

∑(𝑃𝐵𝑢𝑦(𝑚,𝑡) − 𝑃𝑆𝑒𝑙𝑙(𝑚,𝑡)) ⋅ 𝑀𝑃(𝑚,𝑡,𝑠)

𝑁𝑚

𝑚=1

+

∑ (𝑀𝐵𝑢𝑦(𝑙𝑚,𝑡) − 𝑀𝑆𝑒𝑙𝑙(𝑙𝑚,𝑡)) ⋅ 𝐿𝐸𝑀(𝑙𝑚,𝑡,𝑠)

𝑁𝑙𝑚

𝑙𝑚=1 ]
 
 
 
 
 

𝑇

𝑡=1

⋅ ∆𝑡   ∀𝑠 ∈ 𝑁𝑠. 

(27) 
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Where 𝑁𝑙𝑚 is the number of LEMs, 𝑀𝐵𝑢𝑦, and 𝑀𝑆𝑒𝑙𝑙 are the amount of power bought and 

sold in the LEM in each period 𝑡. The 𝐿𝐸𝑀 parameter is the LEM prices for period 𝑡 which 

depends on scenario 𝑠. 

New constraints are introduced to control de offers and bids made in the LEM.  

𝑀𝑆𝑒𝑙𝑙(𝑚,𝑡) ≥ 𝑀𝑆𝑒𝑙𝑙𝑚𝑖𝑛(𝑚,𝑡) ⋅ 𝑥𝐿𝑀𝑆𝑒𝑙𝑙(𝑚,𝑡)     ∀𝑙𝑚, ∀𝑡. (28) 

𝑀𝑆𝑒𝑙𝑙(𝑚,𝑡) ≤ 𝑀𝑆𝑒𝑙𝑙𝑚𝑎𝑥(𝑚,𝑡) ⋅ 𝑥𝐿𝑀𝑆𝑒𝑙𝑙(𝑚,𝑡)     ∀𝑙𝑚, ∀𝑡. (29) 

𝑀𝐵𝑢𝑦(𝑚,𝑡) ≥ 𝑀𝐵𝑢𝑦𝑚𝑖𝑛(𝑚,𝑡) ⋅ 𝑥𝐿𝑀𝐵𝑢𝑦(𝑚,𝑡)     ∀𝑙𝑚, ∀𝑡. (30) 

𝑀𝐵𝑢𝑦(𝑚,𝑡) ≤ 𝑀𝐵𝑢𝑦𝑚𝑎𝑥(𝑚,𝑡) ⋅ 𝑥𝐿𝑀𝐵𝑢𝑦(𝑚,𝑡)     ∀𝑙𝑚, ∀𝑡. (31) 

𝑥𝐿𝑀𝑆𝑒𝑙𝑙(𝑚,𝑡) + 𝑥𝐿𝑀𝐵𝑢𝑦(𝑚,𝑡) ≤ 1     ∀𝑚, ∀𝑡. (32) 

Where 𝑀𝑆𝑒𝑙𝑙𝑚𝑖𝑛, and 𝑀𝑆𝑒𝑙𝑙𝑚𝑎𝑥 are the minimum and maximum limits for selling imposed to 

the LEM 𝑚 in period 𝑡, and 𝑀𝐵𝑢𝑦𝑚𝑖𝑛, 𝑀𝐵𝑢𝑦𝑚𝑎𝑥 are the minimum and maximum bidding 

capacity for the LEM 𝑚 in period 𝑡. In (32) the binary variables 𝑥𝐿𝑀𝑆𝑒𝑙𝑙, and 𝑥𝐿𝑀𝐵𝑢𝑦 

represent the state of the LEM because bidding and offering cannot occur at the same time. 

As shown in Figure 16 the external supplier and dispatchable generation values are closed 

through contracts made in the day-ahead optimization. In this situation the external supplier 

and dispatchable generation power in the intraday is formulated as follows: 

𝑃𝐷𝐺(𝑖,𝑡) = 𝑃𝐷𝐺(𝑖,𝑡)
𝐷𝐴 ⋅ 𝑥𝐷𝐺(𝑖,𝑡)

𝐷𝐴      ∀𝑖 ∈ Ω𝐷𝐺
𝑑 , ∀𝑡. (33) 

𝑃𝑒𝑥𝑡(𝑘,𝑡) = 𝑃𝑒𝑥𝑡(𝑘,𝑡)
𝐷𝐴 ⋅ 𝑥𝑒𝑥𝑡

𝐷𝐴     ∀𝑘, ∀𝑡. (34) 

Where 𝑃𝐷𝐺
𝐷𝐴 is the amount of active power obtained in the day-ahead optimization for each 

dispatchable generation unit 𝑖 for each period 𝑡. 𝑃𝑒𝑥𝑡
𝐷𝐴 is the amount of active power obtained 

in the day-ahead optimization for each external supplier unit 𝑘 for each period 𝑡. The binary 

variables 𝑥𝐷𝐺
𝐷𝐴, and 𝑥𝑒𝑥𝑡

𝐷𝐴  are also set to the obtained day-ahead values for the state of the 

generators. 

The WS market offers, and bids are according to values negotiated in the day-ahead. The 

hour-ahead offers and bids for the WS market can be written as: 

𝑃𝑆𝑒𝑙𝑙(𝑚,𝑡) = 𝑃𝑆𝑒𝑙𝑙(𝑚,𝑡)
𝐷𝐴 ⋅ 𝑥𝑆𝑒𝑙𝑙(𝑚,𝑡)

𝐷𝐴     ∀𝑚, ∀𝑡. (35) 

𝑃𝐵𝑢𝑦(𝑚,𝑡) = 𝑃𝐵𝑢𝑦(𝑚,𝑡)
𝐷𝐴 ⋅ 𝑥𝐵𝑢𝑦(𝑚,𝑡)

𝐷𝐴      ∀𝑚, ∀𝑡. (36) 
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Where 𝑃𝑆𝑒𝑙𝑙
𝐷𝐴  is the amount of sold power negotiated in the day-ahead in market 𝑚 for period 

𝑡, and 𝑃𝐵𝑢𝑦
𝐷𝐴  is the amount of bought power negotiated in the day-ahead in market 𝑚 for 

period 𝑡. The state of the market in the day-ahead is given by  𝑥𝑆𝑒𝑙𝑙
𝐷𝐴 , and 𝑥𝐵𝑢𝑦

𝐷𝐴  which are also 

fixed for the intraday optimization (previously subject to (26)). The values in (33)-(36) are 

decided in the day-ahead for each hour, so for each 15 minutes time slot of an hour, it is 

assumed the same value negotiated in the day-ahead. 

3.2. RISK-BASED ERM 

A risk-based methodology is applied to the proposed ERM model when it comes to the day-

ahead. This section shows the formulation of a risk-neutral strategy and a risk-averse strategy 

for an aggregator. The risk-neutral method does not incorporate the parameters that measure 

risk. On the other hand, the risk-averse uses these parameters to guarantee a better solution 

in the occurrence of extreme events. 

3.2.1. RISK-NEUTRAL FORMULATION 

A risk-neutral strategy considered for the day-ahead ERM considers the uncertain behavior 

of an aggregator’s technologies such as renewable generation, load consumption, market 

prices, EV consumption behavior. In this case, the stochastic behavior of these parameters 

is considered in the approach used through various scenarios with an associated probability 

of occurrence, as will be described in subchapter 3.4.  

When the risk is not considered, the formulation of the scheduling of this aggregator is done 

based on the expected scenario. The cost and the value of the OF when a risk aversion 

strategy is not considered is given by the expected cost and its formulation is given by: 

𝑍𝑡𝑜𝑡
𝑠 = 𝑍𝑂𝐶

𝑠 − 𝑍𝐼𝑛
𝑠 + 𝑃𝑠. (37) 

𝑍𝐸𝑥  =  ∑(𝜌𝑠 × 𝑍𝑡𝑜𝑡
𝑠 )

𝑁𝑠

𝑠=1

 . 

(38) 

Where 𝑍𝑡𝑜𝑡
𝑠

 is the total OF value of each scenario 𝑠 given by the difference between 

operational costs in each scenario (𝑍𝑂𝐶
𝑠

), the income in each scenario (𝑍𝐼𝑛
𝑠

), and the penalties 

for bounds violations (𝑃𝑠). The expected OF cost is represented by 𝑍𝐸𝑥, and 𝜌𝑠 is the 

probability of the respective scenario. 
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3.2.2. RISK-AVERSE FORMULATION 

A risk-aversion strategy considers the risk associated with the uncertainty of the previously 

mentioned technologies. In this situation, the aggregator takes into account the worst-case 

scenario when day-ahead scheduling is performed. This situation is due to extreme scenarios, 

scenarios with a low probability of occurrence, but that significantly affect the scheduling 

because they present significant variations compared to the other scenarios, that is, scenarios 

with high consequences. These scenarios can represent a high peak in market prices, load 

demand, a reduction, or even the absence of renewable production. 

In this work the CVaR is implemented, which is a risk measurement mechanism that will 

take into account these extreme events in order to minimize their impact. CVaR adds to the 

concept of VaR because VaR can only measure risk when the expected cost 𝑍𝐸𝑥 does not 

exceed the confidence level (α) for all simulated scenarios. CVaRα allows to measure risk 

past the confidence level, that it, this parameter is added to the expected cost  𝑍𝐸𝑥 when the 

value of the OF of the scenarios is higher than 𝑍𝐸𝑥 + 𝑉𝑎𝑅𝛼 which gives them the notation 

of conditional expected cost. For the simulations involving risk-aversion α was considered 

to be 95% which is a typical value for this parameter [77].  

The VaRα, CVaRα, and 𝑧𝑒𝑋 concepts are represented in Figure 16 through the normal and 

cumulative probability distribution functions.  

 

Figure 16 Graphical representation of VaR, CVaR and ZEx through normal and cumulative 

distribution functions [78]. 
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Considering the cost of each scenario and for the α value already known, the VaRα was 

calculated using the cumulative probability distribution function as shown in Figure 16 after 

knowing the value of the expected cost as calculated in (38). 

As previously mentioned CVaRα is an additional cost that is added to 𝑍𝐸𝑥 in (1-α)% of the 

scenarios with the highest costs. After calculating the value of VaRα the CVaRα is calculated 

using the following formulation [78]: 

𝐶𝑉𝑎𝑅𝛼(𝑍𝑡𝑜𝑡
𝑠 ) =  𝑉𝑎𝑅𝛼(𝑍𝑡𝑜𝑡

𝑠 ) +
1

1 − 𝛼
∑𝜌𝑠 × 𝜑

𝑁𝑠

𝑠=1

. 

(39) 

Where φ is given by: 

𝜑 = {
𝑍𝑡𝑜𝑡

𝑠 − 𝑍𝐸𝑥 − 𝑉𝑎𝑅𝛼(𝑍𝑡𝑜𝑡
𝑠 ), 𝑖𝑓 𝑍𝑡𝑜𝑡

𝑠 ≥ 𝑍𝐸𝑥 + 𝑉𝑎𝑅𝛼(𝑍𝑡𝑜𝑡
𝑠 ) ∀𝑠 ∈ 𝑁𝑠

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

(40) 

This parameter is associated with the cost in the worst scenarios, that is, when the cost of 

each scenario 𝑠 exceeds the expected cost with the addition of the VaRα value. If the opposite 

occurs φ is given the value of zero. 

Taking this parameter into account, the OF of the scheduling problem varies according to 

the level of risk aversion considered. The model of the OF in this situation is then given by: 

𝑂𝐹 =  𝑍𝐸𝑥 + 𝛽 ⋅ 𝐶𝑉𝑎𝑅𝛼(𝑍𝑡𝑜𝑡
𝑠 ). (41) 

In this situation the β parameter represents the percentage of aversion to the risk. This 

parameter can vary between 0 and 1. When it is 0 the OF value is only equal to the expected 

cost which means that it is a risk-neutral strategy. β being 1 means that the strategy has 100% 

aversion to risk presenting the safest solution when it comes to the worst scenarios. 

3.3. OPTIMIZATION TECHNIQUE 

The metaheuristic optimization of the ERM problem follows the same framework despite 

the multiple used algorithms. Here the main function used for the hour-ahead energy 

scheduling, the encoding of the individuals, and the fitness function description are shown. 
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3.3.1. PROGRAM STRUCTURE 

The flowchart of the primary function for the hour-ahead ERM is shown in Figure 17. The 

function starts by selecting the aggregator for which you want to optimize the energy 

resources, where it loads the day-ahead results obtained for the aggregator in question. 

 

Figure 17 Flowchart of the main function of the proposed optimization technique. 

Through a function, these results are saved, and the values of the external supplier, 

dispatchable generation, and WS market are fixed and assigned to the limits of these 

variables in intraday. Next, the metaheuristic to be used in the optimization process is 

selected, and the parameters associated with the algorithm are loaded accordingly.  
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The program then enters a cycle where it runs through each optimization hour, where the 

database is loaded. This database has the energy resources associated with the chosen 

aggregator in 15-minute time periods, four periods per hour.  

For the SoC of the ESSs and the batteries of the EVs, a condition is created that will test if 

the optimization is running for the first hour. If this situation is verified, the initial state of 

these batteries is given by the values in the database. If the opposite happens, the initial state 

is provided by the SoC at the end of the previous hour. 

The remaining parameters such as the ids of the different technologies, the number of 

scenarios to be evaluated in the fitness, and others are defined. Minimum and maximum 

limits are defined below for the variables in question. The number of runs for which you 

want to run the optimization is the next parameter to be set. 

The optimization of the energy resources using the chosen metaheuristic is done by the 

program for the chosen number of runs, where at the end of all the runs the results for each 

hour are saved and a check of the solution according to the specified limits is also done, i.e., 

it is checked if the solution is a feasible solution. At the end of the program when the 

optimization done for each hour is finished the results over the 24 hours are saved to be 

compared with the day-ahead values. 

3.3.2. ENCODING OF INDIVIDUALS 

An essential aspect of the metaheuristics to express a given solution is the solution structure 

(e.g., an individual in DE, a particle in PSO, or a genotype in GA). In this case, since one is 

dealing with EAs, the solution of the metaheuristics in question is defined by the number of 

individuals. 

The initial solution generated by the metaheuristic is initialized randomly between the 

maximum and minimum limits specified for each variable. Figure 18 shows the vector 

representation of the developed solutions for the hour-ahead. 

Each solution per individual is represented by sequentially repeating a group of variables for 

all periods of the optimization hour, in this case, four periods (15 minutes each). All variables 

in this group are of the continuous type except for the binary variables associated with the 

state of the generators. This state is 0 if it is not connected to the grid and 1 if it is. For the 
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intraday case, the dispatchable DG and WS market do not vary, and their bounds are equal 

to the values obtained in day-ahead, as stated earlier. The metaheuristics do not consider 

binary market variables because a condition is made with the buy and sell values in WS and 

LEM. If the markets have buy and sell values in the same period, the difference of the sale 

with the purchase is made. If this difference is negative, the selling value is set to zero, and 

the value of this difference is assigned to the buying value and vice versa. This formulation 

also guarantees the non-simultaneity condition. 

In the group of variables belonging to the non-dispatchable generation that includes PV and 

wind generation, it is essential to note that this generation cannot be controlled; hence even 

if it is included in the vector solution, the variables relating to renewable generation will 

have a specific, and thus unchangeable, the value depending on the scenario. 

 

Figure 18 Representation of the generated solution for the intraday ERM model. 

The number of variables is different depending on the chosen aggregator for the 

optimization. Table 3 presents the total number of variables each individual has for the day-

ahead problem for each proposed aggregator, and Table 4 shows the number of variables for 

the hour-ahead problem. In this case, the first four aggregators have a small dimension when 

compared to the fifth aggregator.  This situation results in a fast and better optimization 

process for the first four aggregators. 
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Table 3 Dimension of each individual for each aggregator in the day-ahead ERM. 

Aggregator 1 d=24*19=456 

Aggregator 2 d=24*31=744 

Aggregator 3 d=24*23=552 

Aggregator 4 d=24*47=1,128 

Aggregator 5 d=24*2016=48,384 

Table 4 Dimension of each individual for each aggregator in the intraday ERM. 

Aggregator 1 d=4*20=80 

Aggregator 2 d=4*32=128 

Aggregator 3 d=4*24=96 

Aggregator 4 d=4*48=192 

Aggregator 5 d=4*2017=8,068 

3.3.3. FITNESS FUNCTION 

The methodology adopted for the fitness function is the same for the day-ahead and intraday 

models. The internal evaluation of the fitness of the scenarios is the different process 

between the two. The internal assessment adopts the formulations described in chapter 3.1. 

Figure 19 shows the general operation of the fitness function, which initially receives as 

inputs the array of solutions generated by the metaheuristics previously described in the 

subchapter 3.3.2. It also gets the information of the case study database for all simulated 

scenarios, some additional information, and the number of scenarios to be evaluated in the 

fitness.

 

Figure 19 Fitness function structure of ERM model. 

After providing the inputs for the fitness function, several random scenarios are selected 

from the total scenarios in the case study according to the number of scenarios to be 
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evaluated. In this case, a number of 10 random scenarios are internally assessed in the fitness 

both for the day-ahead and hour-ahead models. When it comes to the risk-based strategy, all 

scenarios in the database are evaluated. 

A maximum number of objective function evaluations is also set. This number depends on 

the number of scenarios evaluated and the number of solutions as well. 

Regarding the optimization process of the risk-based methodology Figure 20 shows the 

fitness function that the chosen metaheuristic evaluates for cost minimization. Initially the 

database with the formulated scenarios is passed as argument to the function, and the value 

of the variable that controls risk aversion is also initialized. Next, each scenario is evaluated 

according to the equations in Section 3.1. This evaluation is done in order to obtain the cost 

of each scenario, which is saved to then calculate the expected cost. 

 

Figure 20 Fitness function of the risk-based optimization. 

The expected cost, the cost of each scenario, and the probabilities of each scenario are used 

to calculate the VaRα and CVaRα values according to the formulation in Section 3.2. After 
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the parameters that measure risk have been calculated, the aggregator enters a decision 

process according to the risk aversion factor. That is, through the value of the OF the 

aggregator chooses the best strategy. 

This evaluation is done by the metaheuristic in order to minimize the value of the OF in a 

given number of iterations, so when the beta is zero the metaheuristic will only minimize the 

expected cost, but when the beta is 1 the metaheuristic tries to minimize the expected cost 

as well as the CVaRα. 

3.4. UNCERTAINTY 

The aggregators in the considered model experience uncertainty originating from multiple 

resources (random driving patterns of EV users and charging behavior) through projected 

uncertainties of market prices, renewables, and EV travel behavior. Due to the randomness 

of these variables, the outcome is nearly impossible or impossible to determine, so the 

decision-making process cannot be done correctly. These uncertainties associated with the 

mentioned resources are considered in the proposed method through a scenario-based 

optimization technique. The Monte Carlo Simulation (MCS) method is used, which will 

obtain numerical results using massive random sampling; that is, it will repeat subsequent 

simulations many times to calculate the heuristic probability [79]. For any variable with 

uncertainty, it creates a viable product model using a probability distribution, in this case the 

normal distribution function. The findings are then recalculated using a range of values 

between the minimum and maximum. The scenarios 𝑥 𝑠 can be represented as the sum of 

the errors obtained from historical data as given by: 

𝑥 𝑠 =  𝑥𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑(𝑡)  +  𝑥𝑒𝑟𝑟𝑜𝑟,𝑠(𝑡). (42) 

Where  𝑥𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 (𝑡) is the error related to the forecast made in each instant 𝑡, which can 

have a negative or positive value, 𝑥𝑒𝑟𝑟𝑜𝑟,𝑠(𝑡) is the term associated with the error involving 

each scenario 𝑠 with a normal distribution function with a zero-mean noise, and standard 

deviation σ. 

Figure 21 shows an example of a scenario tree where each circle represents a node which 

gives the state of a random variable at a certain time, and each branch represents the specific 

scenario.  
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Many scenarios are initially created resulting in a large-scale problem. The larger the number 

of scenarios is the more accurate the model is. Despite the great accuracy that can be obtained 

there is a tradeoff in terms of computational time and memory requirements. The larger the 

set of scenarios is the more time and memory is required. To handle tractability of the 

problem, a scenario reduction technique is used [80]. Similar scenarios are bundled together, 

and scenarios with a low probability of occurrence are eliminated. A scenario subset is then 

created close to the initial distribution in terms of a probability metric. The primary goal of 

scenario reduction is to make the large-scale problem substantially smaller. After using these 

methods, the number of variables and constraints is reduced. As a result, the computational 

time is significantly reduced, finding reasonable solutions quickly while maintaining the 

primary statistical characteristics of the original dataset. The computational effort is also 

reduced, and less system memory is required, but accuracy is reduced due to imprecisions 

introduced to the final solution. 

 

Figure 21 Scenario tree. 

In the intraday methodology, the scenario with the highest probability was sought in the 

scenarios created for the day-ahead to generate scenarios to address the uncertainty in the 
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intraday time horizon. This scenario served as a base for creating the new scenarios applying 

a small noise variation to the parameters with uncertainty through the normal probability 

distribution function 𝒩(1,0.05) with a mean value of one and standard deviation of 5%. For 

each created scenario it was assumed that the probability should be equal given by 
1

𝑁𝑠
. This 

method is not the most correct when creating new scenarios, and a methodology similar to 

the one applied to the creation of scenarios for the day-ahead should be implemented in the 

intraday model. 

Regarding the risk-based strategy, ten random extreme scenarios from the database were 

created, simulating realistic situations for extreme events. This number of scenarios was 

chosen in order to try to guarantee a balance between the occurrence of extreme events and 

normal scenarios, thinking about what events with low probability of occurrence could be, 

but with great impact on the solution, for the operation problem, since this is a methodology 

not present in the literature for this type of problem. 

 In the first extreme scenario modeled a 50% increase in load during the day was considered. 

Regarding the second extreme scenario created a reduction of 80% in market capacity of 

buy/sell was considered all day. Damage to the distribution lines can cause a significant 

reduction in the maximum power capacity that the external supplier can supply, so in the 

third extreme scenario generated the external supplier maximum generation limit was 

reduced to 8 MW in hours 1 to 7 and 23 to 24. The inexistence of DR that can be caused by 

the failure of the communication system between aggregator and end-user was considered 

in the following scenario were the DR was set to zero all day, and an increase of 40% in 

demand was considered in hours 16 to 22. The following scenario that can cause risk to the 

aggregator considered a 60% of load increase, a 20% rise in wind generation in different 

parts of the day, and a 30% PV production increase. In the sixth extreme scenario created a 

30% load increase from hours 13 to 20 was modeled and the inexistence of market capacity 

for trading occurred from hours 1 to 12 and 22 to 24. In the following scenario the external 

supplier capacity was again limited, and a rise in market prices also occurred in different 

hours. A market capacity of 4 MW, and a 30% increase in renewable generation were 

considered in the next created scenario. A load increase of 50%, a DR capacity reduction of 

30%, and a rise of 80% in market prices were considered during multiple parts of the day in 

the extreme scenario number nine. The final scenario of risk modeled contemplated an 
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increase of 120% in electricity market prices that occurred during the 17th hour to the 22nd 

hour of the day, and a 60% DR reduction from hour 9 to hour 19. 

The total probability of the extreme scenarios was equal to 0.5%. Since the extreme events 

have a low probability of occurrence, i.e., these scenarios were given a lower probability 

than the lowest probability existing in the database. In this case, the probability of the 

remaining scenarios needed to be altered so the total could be equal to 100%. The normal 

scenarios in the database were added an equal probability given by: 

𝑆𝑠−𝑟 =
1 − ∑ 𝜌𝑠

𝑁𝑠
𝑠=1

𝑁𝑠 − 𝑁𝑟

. 
(43) 

Where 𝑆𝑠−𝑟 represents the probability added to the normal scenarios, and 𝑁𝑟 is the total 

number of extreme scenarios. 

3.5. CHAPTER CONCLUSIONS 

In this chapter, the ERM models for day-ahead and hour-ahead were presented, and their 

mathematical formulations considering cost and profit functions that are subject to several 

constraints. A risk strategy for day-ahead scheduling was also formulated, considering VaR 

and CVaR as risk measurement tools. An entire optimization technique underlies the 

proposed models. The general structure of the program used in intraday is shown, how the 

population generation is done by the metaheuristics, and the problem dimension of each 

proposed aggregator for the day-ahead and hour-ahead time horizons. Once the population 

is generated, it is necessary to evaluate each individual through a fitness function. The fitness 

function evaluation methodology is then presented for the ERM case for the multiple 

aggregators and the risk aversion strategy. To deal with the uncertainty of the energy 

resources considered here, the modulation for the generation of scenarios is presented 

through an MCS for day-ahead scheduling. Through this simulation, many scenarios that 

resulted from that to alleviate computational requirements were reduced. From this 

reduction, the scenario with the highest probability was chosen to generate new scenarios 

for intraday, with a variation associated with them. Also, in the scenario generation was 

presented, in this case manually, the generation of scenarios corresponding to extreme events 

for the risk-based optimization. All this methodology will be applied to the case study 

presented in the next chapter (chapter 4). 
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4. CASE STUDY 

The proposed methodology previously shown is applied to the case study described in this 

section. 

4.1. DISTRIBUTION NETWORK AND EV SCENARIO SIMULATOR 

This case study considres five different aggregators [81]. Each aggregator is responsible for 

managing a variety of resources, including those that are incorporated into a 13-bus DN 

inserted in a smart city (SC) in the BISITE laboratory in Salamanca, Spain (mock-up), with 

a variety of loads, a high percentage of EVs, and renewables like Figure 22 shows [82].  

This DN is composed by 25 load points of multiple types, namely: 1375 homes; 7 office 

buildings; 1 hospital; 1 fire station; 1 shopping mall. It features one 30MVA substation 

located at bus 1, 15 DG units (2 wind farms and 13 PV parks), and four 1Mvar capacitor 

banks.  

The SC in question has seven charging stations allowing a large number of EVs to charge 

their batteries, including four 7.2kW slow charging stations per connection point and 50kW 

fast charging stations per connection point. Figure 23 shows all of the technologies listed as 

a single-line diagram of the 13-bus. 
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Figure 22 Smart city schematic [82]. 

 

Figure 23 Single-line diagram of the distribution network [82]. 

The considered aggregators are divided as follows: 

• Aggregator 1: Service loads (hospital, fire station, and shopping mall); 

• Aggregator 2: Residential loads; 

• Aggregator 3: Office loads; 
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• Aggregator 4: Renewable production; 

• Aggregator 5: Evs. 

For the performed simulations a total of 2000 Evs were considered where the data from each 

was obtained from an EV Scenario Simulator Tool available in [83]. The software receives 

as inputs the initial SoC of the batteries, a step rate, the total number of periods, the maximum 

allowed discharge percentage, charging and battery efficiency, and the total number of EVs 

considered. Other parameters are considered for the simulator as shown in Table 5 such as 

the percentage of cars in charging as well as the percentage of cars that are inside the 

network, which in this case were considered 100%, i.e., no cars leave or enter the considered 

DN. A period and distance distribution are also used as inputs where the trip distance 

distribution is comprehended between 10 and 190 km. 

Table 6 lists the types of EVs for the six vehicle model types (four BEVs and two PHEVs) 

used in this simulator. According to [84], this table also shows the vehicle class and their 

associated description. 

Table 5 Inputs for the Electric vehicle Trip Simulator [83]. 

Parameter Description Value 

initialStateOfBats Initial state of batteries 30% 

stepRate Simulation time step 1 hour 

totalStep Total number of steps (periods) 24 

batteryMaxDoD Battery max. depth of discharge permitted (DoD) 80% 

chargerEfficiency Charging device efficiency 88% 

batteryEfficiency Battery efficiency 90% 

evNum Number of electric vehicles 2000 

sameInitalEndBusProb 
Probability of the EV to end in the same starting 

network bus in the simulation scenario 
100% 

parkedAllDay 
Cars percentage that are always parked and connected 

to the grid 
5% 

carsInsideNetwork Cars percentage that remain inside distribution network 100% 

carsGoingOutsideNetwork Cars percentage that leave distribution network 0% 

carsGoingInsideNetwork 
Cars percentage that arrive from other distribution 

network 
0% 
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Table 6 Electric vehicle model description. 

Model ID Vehicle type Vehicle class Description 

1 BEV L7e Passenger car 

2 BEV M1  Passenger car 

3 BEV N1  Commercial van 

4 BEV N2  Light truck 

5 PHEV M1  Passenger car 

6 PHEV N1  Commercial van 

Table 7 presents the characteristics associated with each EV considered when it comes to 

battery capacity, charging rate for slow and fast charging stations, the energy consumption, 

average usage and speed, and tank capacity when the EV is the PHEV type, since it also has 

in its engineering a combustion engine. 

Table 7 Electric vehicle model characteristics. 

Model ID 

Battery 

capacity 

(kWh) 

Slow 

charging 

rate 

(kW) 

Fast 

charging 

rate 

(kW) 

Average 

economy 

(kWh/km) 

Average 

speed 

(km/h) 

Average 

usage 

(km/day) 

Tank 

capacity 

(liters) 

1 6.10 3.60 0.00 0.06 20.00 30.00 0.00 

2 40.00 6.60 50.00 0.16 38.00 34.00 0.00 

3 33.00 7.40 0.00 0.19 56.00 32.00 0.00 

4 82.80 7.20 50.00 0.65 136.00 16.00 0.00 

5 8.90 3.30 0.00 0.11 20.00 16.00 43.00 

6 13.60 3.70 0.00 0.26 20.00 16.00 54.00 

Table 8 shows the distribution percentage of each class, which means that from the 2000 

EVs, 10 are Le7 cars, 1740 are M1 cars, 200 are N1 vehicles, and 50 are N2 vehicles. For 

the BEVs, a 67% distribution was considered and 33% for PHEVs. This simulator allows to 

obtain data regarding each EV’s trips such as maximum charge, and discharge rate, 

minimum charging required so the EV can make its trip in the next hour, and many other 

parameters that serve as input for the optimization. 

When all these inputs are entered into the tool, it will give as outputs the total number of 

kilometers driven by each simulated vehicle, the energy expended by the battery per trip, the 

number of trips made, and the total energy expended by the battery in the total number of 

trips. 
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Table 8 EV classes distribution. 

Vehicle 

class 

Share 

(%) 

L7e 0.50 

M1 87.00 

M2 0.00 

M3 0.00 

N1 10.00 

N2 2.50 

N3 0.00 

4.2. ENERGY RESOURCE INFORMATION 

Five thousand scenarios were generated concerning load consumption, renewable 

production, electricity market prices, and EV charging stations in the day-ahead scheduling. 

The highest standard deviation values for the uncertainty variables evaluated (load 

consumption, electricity market price, parking lot capacities, parking lot charge, and 

discharge) are 15%, 10%, 35%, 35%, and 35%, respectively. Minimum values are 8%, 6%, 

20%, 20%, and 20%. The standard deviation (or error) between these bounds for these 

parameters is calculated using random values. The charging station discharge term was not 

considered in the objective function. Instead, the EV discharging term was considered. 

Figure 24 depicts the average of the precise standard deviation (percentage) for the forecast 

of the renewable technologies, in this case, study (wind and PV) for the day-ahead time 

horizon [85]. 

 

Figure 24 Average forecast error for generation technologies [85]. 
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Each aggregator must manage their respective resources, power bought from the external 

supplier, and energy bought/sold in the marketplaces. Two ESSs were also considered and 

are attributed to all aggregators. Also are integrated into the DN four capacitors but are not 

considered in this problem, so they are set to zero because reactive power was not taken into 

consideration in the problem formulation. Table 9 presents the data of the energy resources 

associated with each aggregator for the day-ahead formulation where a distinction is made 

from the aggregators, prices of the resources, capacity, forecasted values from the 

renewables and loads, and the number of units corresponding to each resource. In this case 

study, the costs of PV and Wind are much higher than the costs of the other technologies 

because they are levelized costs taken from [86], where the costs of the installations 

throughout their useful life are also included [87]. 

Table 9 Energy resources information of each aggregator in the day-ahead model. 

Energy resources Aggregators 

Prices 

(m.u./MWh) 

Capacity 

(MW) 

Forecast 

(MW) Units 

min-max min-max min-max 

Capacitors   1-5 0-0 0.00-0.00   4 

Photovoltaic   4 150-150   0.00-0.81 13 

Wind   4 130-130   0.00-3.75 2 

External 

supplier 
  1-5 50-90 0-30.00   1 

Storage 
Charge 

1-5 
110-110 0.00-1.25   

2 
Discharge 90-90 0.00-1.25   

Electric 

vehicles 

Charge 
5 

0-0 0.01-0.13   
2000  

Discharge 90-90 0.01-0.09   

Demand 

response 

Reduce 

program 1 
1 100-100 0.01-1.21   3 

Reduce 

program 2 
2 100-100 0.01-0.08   15 

Reduce 

program 3 
3 100-100 0.28-1.11   7 

Load type 1   1 0-0   0.01-2.25 3 

Load type 2   2 0-0   0.01-0.14 15 

Load type 3   3 0-0   0.31-1.91 7 

Market buy and 

sell 
  1-5 27.99-65.97 0.00-10.00   1 

In the intraday, 150 new scenarios were produced from the scenario with the highest 

probability in the day-ahead. A normal distribution function was applied to the uncertain 

resources from this scenario with a 5% variation to inject into the provided hour-ahead model 
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using these generated scenarios. This circumstance is not ideal, and it may cause a minor 

change in the obtained results because the same technique applied in the day-ahead model 

should be applied for the hour-ahead making the forecast no for 24 hours but for 96 periods 

of 15 minutes each.  

The overall demand and renewable generation forecasted by the proposed method for the 

first four aggregators is shown in Figure 25. From aggregator 1 to 3, the range for the total 

demand is given, and full renewable power is demonstrated in aggregator 4. 

Figure 26 demonstrates the prices in intraday marketplaces for these aggregators’ resource 

optimization when it comes to the external supplier, WS electricity market, and the proposed 

LEM. 

 

Figure 25 Total demand and renewable generation forecast for each aggregator in the intraday 

time horizon. 

Compared to the LEM, which changes the prices in the range depicted in Figure 26 the 

external supplier and WS market prices are fixed and do not alter because the contracts from 

the power bought from the external supplier and the WS market were closed in the day-

ahead scheduling. Because the LEM is often more expensive than the WS market due to its 

proximity to the retail market, the price gap between the two markets was calculated at 25% 
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with the prices of the LEM suffering a 5% variation. The considered percentage was small 

because it turned out that the higher this percentage is, the more the algorithm will try to sell 

the excess in the market to earn a higher profit which often caused a decrease in costs from 

day-ahead to intraday, which is not expected to happen because the scheduling gets closer 

to real-time which corresponds to an increase in costs from the day-ahead. The LEM is 

regarded to have 25% the capacity of the WS market because this market exists in a 

neighborhood environment, i.e., with a small capacity compared to the WS market, and 

prices closer to retail [3]. 

 

Figure 26 External supplier, WS market, and LEM prices for the intraday time horizon. 

Table 10 presents the data of the energy resources associated with each aggregator for the 

intraday time horizon. The values presented correspond to each resource between all the 

units and not to the total values like the figures previously shown demonstrate. In this case 

most of prices remain the same as they were in the day-ahead model shown in Table 8 with 
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the difference being the WS market prices that now are fixed and the introduction of the 

LEM prices. The forecasted values are also altered due to the time horizon being different. 

Table 10 Energy resources information of each aggregator in the intraday model. 

4.3. RISK-BASED ENERGY RESOURCE INFORMATION 

In the risk-based formulation for some extreme scenarios, a large variation is noticed from 

the variable inputs of the aggregator. In this case, variations in load demand and renewable 

generation are seen. Figure 27 presents the total load demand and renewable generation 

varying between the minimum and maximum values for a total of 24 hours. 

It is possible to observe that a significant difference between load limits is verified from 

approximately hours 10 to 20. When it comes to renewable generation variations, the 

proposed extreme scenarios did not essentially influence the minimum and maximum limits 

because the presented range is diminutive compared to the load demand. Regarding the 

considered costs in this scenario Figure 28 presents the range of the WS market prices and 

the external supplier prices. A significant variation can be seen regarding the market prices 

Energy resources Aggregators 

Prices 

(m.u./MWh) 

Capacity 

(MW) 

Forecast 

(MW) Units 

min-max min-max min-max 

Capacitors   1-5 0-0 0.00-0.00   4 

Photovoltaic   4 150-150   0.00-0.94 13 

Wind   4 130-130   0.60-2.80 2 

External supplier   1-5 40-90 0-30.00   1 

Storage 
Charge 

1-5 
110-110 0.00-1.25   

2 
Discharge 90-90 0.00-1.25   

Electric vehicles 
Charge 

5 
0-0 0.01-0.13   

2000  
Discharge 90-90 0.01-0.09   

Demand response 

Reduce 

program 1 
1 100-100 0.01-1.21   3 

Reduce 

program 2 
2 100-100 0.01-0.08   15 

Reduce 

program 3 
3 100-100 0.28-1.11   7 

Load type 1   1 0-0   0.01-2.23 3 

Load type 2   2 0-0   0.01-0.13 15 

Load type 3   3 0-0   0.31-1.88 7 

Market buy and sell   1-5 39.66-56.08 0.00-10.00   1 

Local electricity 

market buy and sell 
  1-5 42.97-82.61 0.00-2.50   1 
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due to the multiple extreme scenarios that consider an increase in market costs. Here the 

maximum value increases from 65.97 m.u. to 116.22 m.u. (hour 21) an increase of 43.24% 

from what was considered in Section 4.2, with the external supplier costs remaining the 

same. 

 

Figure 27 Load demand, and non-dispatchable generation for risk-based model. 

 

Figure 28 External supplier, and WS market prices for risk-based model. 
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Note that if (6)-(10), (12)-(13), (17)-(18), and (21)-(25) are violated a penalty of 1,000 m.u. 

is added to 𝑃𝑠 in (37) for each variable that exceeded the specified bounds. 

4.4. ALGORITHM PARAMETERS 

Multiple metaheuristics were used to solve the proposed energy management model for the 

day-ahead and intraday models, and Table 11 shows the parameters chosen for each 

algorithm. For all metaheuristics, the population size (NP) and the maximum number of 

iterations was 20, and 250 respectively, taking into consideration the number of objective 

function evaluations set to 50,000 considering the number of evaluation scenarios which was 

set to 10 to reduce computational effort and time taken by the heuristics. When it comes to 

the risk-based approach since the total of scenarios to be evaluated is 150, and maintaining 

the NP, and the maximum number of iterations, the objective function evaluations was set 

to 750,000. 

The sensibility of the NP parameter was studied in [85] for the day-ahead and it was 

concluded that the overall best value for this parameter in the tested metaheuristics was 20. 

The crossover probability (Cr) and scaling factor (F) are the following parameters, which 

are necessary for the first three displayed algorithms. The sub-population size is given by p, 

and the number of selected individuals is provided by s. α represents the additional 

occurrence used in the scaling method of the HC2RCEDUMDA algorithm. The number of 

elitist individuals is represented by l. The neighborhood ratio is given by r. Finally, k is the 

number of codes used in the HC2RCEDUMDA metaheuristic.  

A statistical ranked test was also applied to these metaheuristics for a comparison of 

performance. A Wilcoxon test was chosen to test the algorithms where a base metaheuristic 

served for comparison, in this case the CUMDANCauchy++ which obtained great results in 

the “2020 Competition on Evolutionary Computation in the Energy Domain: Smart Grid 

Applications” which incorporated an ERM problem similar to the one proposed. 

All performed simulations were run in MATLAB 2018a with Windows 10 using a machine 

with a quad-core AMD Ryzen 5 3500U processor with 2.1 GHz base clock speed and 16GB 

of RAM. 
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Table 11 EAs parameters. 

Parameter DE HyDE-DF DEEDA CUMDANCauchy++ HC2RCEDUMDA 

NP 20 

Max iterations 250 

Cr 0.5 - 

F 0.3 - 

p - 16 16 - 

s - 2 2 3 

α - 0.009 

l - 3 

r - 3 

k - 7 

4.5. CHAPTER CONCLUSIONS 

In this chapter, the case study for the application of the developed methods is presented. 

Since multiple aggregators are considered in the DN given here, their aggregated energy 

resource division is done. To generate the data for the EV aggregator, a scenario generation 

tool was used for the trips of each electric vehicle. In this case, high penetration of cars (2000 

EVs) is considered. This tool allows obtaining the uncertainty parameters considering the 

characteristics of each car considered and multiple probabilistic distributions as 

demonstrated. The variation of uncertain resources for day-ahead and intraday and the risk 

methodology is presented. Due to the risk scenarios created, the latter shows a more 

significant variation in the aggregator inputs. Since multiple metaheuristics are used to 

optimize resource scheduling, the definition of their parameters is presented here. These 

parameters are chosen because in [85], a sensitivity analysis of the number of individuals 

and the number of iterations was done, keeping the same number of objective function 

evaluations. 
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5. RESULTS AND DISCUSSION 

This section presents and discusses the results obtained for the intraday ERM problem when 

multiple metaheuristics are applied. The results for the risk-based mechanism applied to the 

day-ahead problem considering only one aggregator in the DN are also presented. 

5.1. DAY-AHEAD AND INTRADAY SCHEDULING RESULTS 

The best-obtained results (lowest cost) for the day-ahead problem for one run using CI is 

presented in Table 12. In [85] with CUMDAN obtained the best scheduling results for the 

day-ahead but for this case with different external supplier costs, and EV 

charging/discharging costs HyDE-DF presented better results in comparison to this 

algorithm, so Table 12 presents the day-ahead results for the HyDE-DF algorithm. It shows 

each proposed aggregator's cost when scheduling their resources for the next 24 hours. The 

time that the program took to complete the run is also presented in Table 12. It is possible to 

observe that the last aggregator was the slowest to optimize due to the number of variables 

which is significant more when compared to the other aggregators as seen in Section 3.3.2.  
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Table 12 Day-ahead objective function results and optimization time. 

Aggs 

Costs 

(m.u.) Penalties (m.u.) Time (s) 

1 1,508.84 0.00 12.30 

2 985.62 0.00 13.43 

3 7,793.99 0.00 14.92 

4 8,641.38 0.00 12.35 

5 906.80 0.00 392.71 

The day-ahead scheduling results for the first aggregator are presented in Figure 29. The 

total energy generated/consumed was 29.73 MWh with 29.31 MWh being load, 0.31 MWh 

being ESS charging, and 0.11MWh being from market sales from the consumption side. 

From the generation side 0.24 MWh is given from the external supplier (DG type 2), 

1.77MWh from the DR, 0.23 MWh from ESS discharging and finally 27.49 MWh from 

market buys.  

It is possible to observe from Figure 29 that the consumption is majorly given by the demand 

from the loads associated with the aggregator. When it comes to power generation the 

aggregator majorly goes to the WS market to buy energy with some DR, and ESS discharge. 

In period 5 the aggregator chooses to buy from the external supplier because he considers 

that it is cheaper to buy from the external supplier in relation to the market as seen in the 

remaining periods. 

 

Figure 29 Day-ahead scheduling results for aggregator 1 regarding power a) generation; b) 

consumption. 

When it comes to the second aggregator the scheduling results are given in Figure 30. The 

total energy generated/consumed was 21.14 MWh. In the consumption 5.12 MWh is given 

by the residential loads, 0.22 MWh by ESS charging, and 1.96 MWh from WS market sales. 

The total generation is obtained from 5.12 MWh of external supplier generation, 1.03 MWh 
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from DR, 0.16 MWh from the discharging of ESSs, and 14.83MWh of WS market buys. 

Here it is worth noticing that the aggregator in some periods, mainly in periods 4, 6, and 24, 

decides to get energy from the external supplier when it is cheaper and sells the excess in 

the market to make some profit (Figure 26). In the remaining periods the aggregator buys 

energy in the market to satisfy the demand. 

 

Figure 30 Day-ahead scheduling results for aggregator 2 regarding power a) generation; b) 

consumption. 

The day-ahead scheduling results for the third load aggregator are demonstrated in Figure 

31. The total energy generated/consumed was 151.26 MWh which is significantly higher 

compared to the previous aggregators, that is, their costs are also much higher compared to 

the costs of the other two load aggregators as shown in Table 12. Office loads account for 

148.45 MWh of consumption, 1.50 MWh of ESS charging, and 1.61 MWh of WS market 

sales. 16.25 MWh of external supplier generation, 10.46 MWh of load reduction, 0.91 MWh 

of ESS discharging, and 123.94 MWh of WS market buys make up the entire generation. 

Once again, this aggregator mainly acquires energy to satisfy its demand. In the early periods 

it is seen that some energy is acquired from the external supplier as it pays off in some 

evaluated scenarios. However, most of the energy is purchased in the market. In the last 

period the aggregator sells the excess energy acquired through the DR and external supplier 

in the market to obtain some profit. Since the cost of the external supplier is low in the last 

period, the aggregator decides that it pays him to buy from the external supplier at a 

particular value and still sell to the market, something that does not happen in the other 

periods, where it only buys energy to satisfy the load. 
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Figure 31 Day-ahead scheduling results for aggregator 3 regarding power a) generation; b) 

consumption. 

The fourth aggregator is the renewable production aggregator, and its scheduling results are 

given by Figure 32. The energy generated/consumed was a total of 100.81 MWh with 100.45 

MWh being from renewable generation (DG type 1), 0.16 MWh from the external supplier, 

and 0.21 MWh from ESS discharging energy. 100.39 MWh market sales are obtained, and 

0.42 MWh of ESS charging is also presented in the consumption. In this case the aggregator 

sells all renewable energy in the market. Even though this situation occurs this aggregator 

presents the higher costs because the renewable energy costs are way higher than the market 

prices.  

 

Figure 32 Day-ahead scheduling results for aggregator 4 regarding power a) generation; b) 

consumption. 

Figure 33 presents the scheduling results for the energy resources of the EV aggregator. A 

total of 16.72 MWh was generated/consumed by the technologies of this aggregator which 

was the least out of all aggregators as is reflected in the price that was the lowest obtained. 

16.48 MWh of EV charging, 0.06 MWh of ESS charging, and 0.18 MWh of WS market 

sales are all accounted for the consumption. 
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Figure 33 Day-ahead scheduling results for aggregator 5 regarding power a) generation; b) 

consumption. 

The total generation is made up of 5.10 MWh of external supplier generation, 0.45 MWh of 

EV discharging, 0.05 MWh of ESS discharging, and 11.12 MWh of market bids. Even 

though the discharging costs considered were high the scheduled values were of small impact 

in the cost. The consumption was given by the charging of EVs in its majority with some 

ESS charging and some market sales from the excess of energy acquired from the external 

supplier, EV and ESS discharging, and some surplus of energy bought in the WS market. 

The intraday costs of each aggregator for the proposed EAs are presented in Table 13 for 

one run. The costs in Table 13 are derived by adding the prices of the optimizations 

performed for each hour during a 24-hour period. The values in terms of costs should not 

vary greatly from day-ahead to intraday, because the intention is that the management in 

day-ahead is done well to then be checked in intraday when the uncertainty is less. In this 

case HC2RCEDUMDA presented the least variation for the first aggregator with no 

penalties added. For the second aggregator DE presented the least variation with a decrease 

of 0.57% in terms of total costs. HC2RCEDUMDA also presented the smallest variation 

from the day-ahead for the third and fourth aggregators.  

When it comes to the third aggregator this algorithm presented a small penalty because for 

one period the demand was not equal to the supply in one of the evaluated scenarios. When 

it comes to the last aggregator all algorithms present a great variation from the day-ahead 

which is not ideal. DE and HC2RCEDUMDA display a greater disparity when compared to 

the other EAs with a significant amount of penalties added; that is, they were unable to 

develop a solution that satisfied the power balancing requirement. 
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Table 13 Intraday cost results, variation, penalties, and optimization time by the tested EAs. 

EAs Aggs 

Avg. costs 

(m.u.) 

Penalties 

(m.u.) 

Variation 

(%) 

Time 

(s) 

DE 

1 1,480.52 0.00 -1.88 2.01 

2 979.99 0.00 -0.57 1.95 

3 7,453.93 0.00 -4.36 2.45 

4 8,525.30 0.00 -1.34 2.20 

5 3,426.20 100.00 277.83 62.68 

HyDE-DF 

1 1,478.76 0.00 -1.99 2.00 

2 946.81 0.00 -3.94 2.06 

3 7,371.56 0.00 -5.42 2.09 

4 8,529.63 0.00 -1.29 2.02 

5 727.21 0.00 -19.80 69.56 

DEEDA 

1 1,472.92 0.00 -2.38 2.06 

2 934.22 0.00 -5.22 2.20 

3 7,317.26 0.67 -6.12 2.24 

4 8,525.34 0.00 -1.34 2.33 

5 713.26 0.00 -21.34 46.26 

CUMDANCauchy+

+ 

1 1,472.92 0.00 -2.38 2.07 

2 934.22 0.00 -5.22 2.20 

3 7,317.53 0.67 -6.11 2.14 

4 8,525.41 0.00 -1.34 2.30 

5 713.26 0.00 -21.34 40.01 

HC2RCEDUMDA 

1 1,509.06 0.00 0.01 24.28 

2 1,050.01 0.00 6.53 23.50 

3 8,026.64 0.67 2.99 24.37 

4 8,532.23 0.00 -1.26 22.64 

5 4,267.04 200.00  370.56 88.92 

The total costs of all aggregators obtained by each metaheuristic for the hour-ahead problem 

are presented in Figure 34. A consistent value of 19,836.63 m.u. is also shown for the total 

price of the day ahead optimization for comparison between all intraday optimizations. The 

algorithm that brought the slightest variation compared with the day-ahead was the HyDE-

DF algorithm with a total value of 19,053.97 m.u., a slight decrease of 782.66 m.u. (3.95%). 

The DEEDA algorithm and the CUMDANCauchy++ algorithm presented similar total costs, 

with DEEDA obtaining a total cost of 18,962.99 m.u. and CUMDANCauchy getting a price 

of 18,963.34 m.u.. In this case, DEEDA showed the lowest prices in the entire system, 

presenting the best value in terms of operational costs with a 4.40% reduction. 

HC2RCEDUMDA and DE presented the worst overall costs, with the first having an 

increase of 17.89% concerning the day ahead and the second giving a total value of 
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21,865.94 m.u. (10.23%). DE and HC2RCEDUMDA gave these costs mainly due to the last 

aggregator, where the costs increased exponentially because of the added penalties. 

 

Figure 34 A comparison of the day-ahead total costs with the overall intraday costs generated 

by each EA. 

The graphics containing the intraday scheduling of the energy resources of the proposed 

aggregators are presented considering the optimization of the EA which obtained the least 

variation costs from the day-ahead to the intraday, as shown in Table 13. Considering this 

situation, the HC2RCEDUMDA scheduling result for the first aggregator is presented in 

Figure 35. The total generation and consumption were 31.10 MWh which corresponded to 

1.37 MWh from the day-ahead. On the consumption side, the values from the market sales 

are equal to the day-ahead, the total load increased from 29.31 MWh to 30.16 MWh, ESS 

charging corresponded to 0.03 MWh, and LEM sales were a total of 0.80 MWh. When it 

comes to the generation, the external supplier generation and market buys are equal to the 

day-ahead, 0.84 MWh of load reduction was obtained, 0.03 MWh of ESS discharging, and 

2.51 MWh of LEM buys. The load increase and the LEM being superior from the sales result 

in increased costs, as presented in Table 13. In this situation, the LEM is used to purchase/sell 

energy by the aggregator to satisfy the existing load variations. The time horizon is closer to 

the real one, and the WS market and external supplier values are fixed at day-ahead. For the 
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most part, the aggregator chooses to go to the LEM, with only a few values of 

charge/discharge of ESSs. 

 

Figure 35 Hour-ahead scheduling results for aggregator 1 regarding power a) generation; b) 

consumption. 

Figure 36 represents the hour-ahead results for the second aggregator for the DE 

optimization. The total energy obtained from generation/consumption in this model 

corresponded to 21.38 MWh, a slight increase from the day-ahead. In this situation, 19.94 

MWh of residential load consumption resulted from the optimization, ESS charging values 

were almost null, and 0.39 MWh resulted from LEM sales. 1.14 MWh of load reduction and 

0.29 MWh of LEM buys were obtained in the hour-ahead model. A slight reduction in costs 

results from this optimization due to the quantity of LEM sales being higher than LEM buys, 

and due to the considered prices, a small profit is obtained concerning the day-ahead. 

 

Figure 36 Hour-ahead scheduling results for aggregator 2 regarding power a) generation; b) 

consumption. 

The intraday scheduling results of the third aggregator is represented in Figure 37.  
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Figure 37 Hour-ahead scheduling results for aggregator 3 regarding power a) generation; b) 

consumption. 

Due to the existence of a penalty in this aggregators optimization the generation is different 

from the consumption. In this case the generation corresponded to the 158.54 MWh and the 

consumption to 158.53 MWh with 5.9 kW of excess power in period 41. An increase of 

10.09 MWh from the day-ahead was verified. Office loads account for 149.22 MWh of 

consumption, 0.86 MWh of ESS charging, WS market sales are equal to the day-ahead, and 

6.85 MWh of LEM sales. External supplier generation, and WS market buys remain fixed 

from the day-ahead, 15.86 MWh of DR, 0.70 MWh of ESS discharging, and 1.82 MWh of 

LEM buys make up the entire generation. Due to the increase of consumption/generation, 

and the existence of penalties the increase in costs from the day-ahead is expected. 

For the fourth aggregator the scheduling results of HC2RCEDUMDA are given in Figure 

38. In this scenario, the total energy acquired from generation/consumption was 101.77 

MWh. Since market solutions, and external supplier values are fixed from the day-ahead the 

LEM only needed to match renewable production variations that occurred, and ESS charging 

and discharging differences. In this case 99.78 MWh of generation from renewables was 

verified representing a small reduction from the day-ahead which corresponds to the 

decrease in costs verified since the generation costs considered are high. Values of 0.05 

MWh of ESS discharging, and 1.78 MWh of LEM buys were also obtained in the generation 

side. In the consumption side the majority is given by the day ahead market solution with 

0.09 MWh of ESS charging, and 1.29 MWh of LEM sales. 
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Figure 38 Hour-ahead scheduling results for aggregator 4 regarding power a) generation; b) 

consumption. 

Figure 39 shows the outcomes of the fifth aggregator's intraday scheduling for the HyDE-

DF optimization. The total energy obtained from generation/consumption in this situation 

was 18.06 MWh. Even though an increase in energy occurred in the hour-ahead model 

compared with the day-ahead the value obtained from LEM sales (4.21 MWh) was 

significantly higher than LEM buys (1.72 MWh) due to the reduction in EV charging that 

was verified (13.67 MWh) that the LEM had to compensate mainly in the first period of each 

hour of optimization. Because the LEM prices are higher than the WS market prices the 

decrease in costs is noticeable even though an increase in consumption/generation occurred. 

 

Figure 39 Hour-ahead scheduling results for aggregator 5 regarding power a) generation; b) 

consumption. 

5.2. ALGORITHM PERFORMANCE 

The performance of the EAs was tested for a total of 20 runs for hour-ahead model 

optimization. The overall results when for the 20 runs it comes to the intraday problem are 

presented in Table 14. The table provides the minimum and maximum cost values, the 
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average and standard deviation in monetary units and percentages, due to the scale of the 

numbers acquired in the various aggregators for the objective function. When it comes to the 

optimization time for the first four aggregators the metaheuristics present similar values but 

for the last aggregator which is the aggregator with the most variables CUMDANCauchy is 

the fastest. From the standard deviation results DEEDA and CUMDAN present great 

percentages with values varying slightly between runs. 

Table 14 Overall intraday results and optimization time by the tested EAs over 20 runs. 

EAs Aggs 

Avg. 

Costs 

(m.u.) 

Std. Costs 

(m.u.) 

Min. 

Costs 

(m.u.) 

Max. 

Costs 

(m.u.) 

Avg. 

Penalties 

(m.u.) 

Avg. 

Time 

(s) 

DE 

1 1,481.98 

4.98 

(0.34%) 1,476.32 1,495.86 0.00 2.05 

2 978.19 

9.25 

(0.95%) 963.07 997.97 0.00 2.46 

3 7,473.07 

51.52 

(0.69%) 7,387.53 7,591.33 0.00 1.98 

4 8,525.54 

0.94 

(0.01%) 8,525.30 8,529.41 0.00 2.16 

5 3,478.17 

49.20 

(1.41%) 3,386.13 3,576.12 100.00 61.44 

HyDE-DF 

1 1,479.70 

3.33 

(0.23%) 1,474.88 1,487.31 0.00 2.05 

2 945.11 

4.08 

(0.43%) 938.80 953.85 0.00 2.03 

3 7,371.48 

23.60 

(0.32%) 7,336.56 7,423.03 0.17 2.03 

4 8,527.98 

4.13 

(0.05%) 8,526.27 8,542.75 0.00 2.20 

5 727.42 

4.74 

(0.65%) 720.35 737.78 0.00 64.73 

DEEDA 

1 1,472.92 

0.00 

(0.00%) 1,472.92 1,472.93 0.00 1.97 

2 934.22 

0.00 

(0.00%) 934.22 934.23 0.00 2.20 

3 7,317.24 

0.18 

(0.00%) 7,316.98 7,317.59 0.67 2.20 

4 8,525.32 

0.09 

(0.00%) 8,525.30 8,525.70 0.00 2.36 

5 713.26 

0.00 

(0.00%) 713.26 713.26 0.00 46.01 

CUMDANC

auchy++ 

1 1,472.92 

0.01 

(0.00%) 1,472.92 1,472.95 0.00 2.27 

2 934.22 

0.00 

(0.00%) 934.22 934.22 0.00 2.07 

3 7,317.35 

0.27 

(0.00%) 7,317.13 7,318.29 0.67 2.12 
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4 8,525.31 

0.06 

(0.00%) 8,525.30 8,525.57 0.00 2.17 

5 713.26 

0.00 

(0.00%) 713.26 713.27 0.00 41.69 

HC2RCED

UMDA 

1 1,516.88 

25.30 

(1.67%) 1,479.81 1,575.26 0.00 24.07 

2 1,052.76 

18.49 

(1.76%) 1,019.28 1,088.99 0.00 22.89 

3 7,984.65 

157.49 

(1.97%) 7,713.67 8,320.24 0.50 23.78 

4 8,532.67 

14.32 

(0.17%) 8,525.99 8,579.71 0.00 22.19 

5 4,349.15 

66.70 

(1.53%) 4,234.71 4,469.32 235.00  89.39 

The intraday results were also subjected to a Wilcoxon test, with a sample of 20 runs lasting 

24 hours each. The CUMDANCauchy++ algorithm, as shown in Table 15, was used as the 

base algorithm for comparison with the others. The Wilcoxon test was applied to each set of 

results of the five aggregators. The statistical test's signal ranking is shown in Table 13. 

Table 15 Results from the Wilcoxon signed-rank test. 

  DE HyDE-DF DEEDA HC2RCEDUMDA 

Agg 1 

CUMDAN 

'+' '+' '+' '+' 

Agg 2 '+' '+' '=' '+' 

Agg 3 '+' '+' '=' '+' 

Agg 4 '=' '+' '=' '+' 

Agg 5 '+' '+' '=' '+' 

It can be concluded that CUMDANCauchy++ outperforms HC2RCEDUMDA, and HyDE-

DF for all aggregators. DE is also outperformed by CUMDANCauchy in all aggregators 

except for the fourth aggregator where they obtain similar results. DEEDA is only 

outperformed in the first aggregator with the remaining both algorithms obtain similar 

performance. 

Figure 40 shows a brief example of each algorithm's convergence for a population of 20 

individuals.  In the 24th hour of the optimization, the first aggregator is put to the test. When 

compared to the other algorithms, CUMDANCauchy++ provides the best conversion, but 

the solution in both CUMDAN and HC2RCEDUMDA can still be improved. This could 

imply that some of the settings used, such as the number of iterations and the objective 

function evaluation limit, were not ideal. DE, HyDE-DF, and DEEDA, on the other hand, 
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appear to have stabilized their fitness. Around generation 50, this last algorithm exhibits a 

rise in fitness. This peak depicts the algorithm's transaction from the DE to the EDA. 

 

Figure 40 A comparison of the day-ahead overall costs with the overall intraday costs generated 

by each tested metaheuristic. 

5.3. RISK-BASED STRATEGY RESULTS 

The purpose of implementing a risk methodology is to minimize the costs associated with 

the risk of uncertainty for extreme scenarios. As such, two models were proposed, the first 

without risk aversion and the second considering 100% risk aversion. In the risk-neutral 

methodology, the aggregator scales to day-ahead based on expected cost, i.e., it considers 

the scenarios with the highest probability of occurrence. The aggregator already considers 

the worst-case scenario for the risk-averse strategy, as it adds to its objective function the 

risk measurement parameter.  

The metaheuristic used to simulate the risk-based day-ahead scheduling was the 

CUMDANCauchy++, which from the previous section (Section 5.2) obtained the best 

overall performance when the Wilcoxon test was applied. 
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Table 16 shows the aggregators' multiple cost components for the risk-neutral and risk-

averse strategies. It is possible to observe an increase of 787.66 m.u. in investment from the 

risk-neutral to the risk-averse approach, majorly given by the generation cost. The 

aggregator prevents itself by investing more in energy production in case some extreme 

event occurs. In this case, the costs from ENS are reduced around 70% from the risk-neutral 

to the risk-averse method, which is a significant improvement because the considered price 

for ENS in this methodology is 3,000 m.u./MWh which is considerably high. Since the 

aggregator has invested more in energy production when dispatching, the costs associated 

with the NES are reduced since it has more production at its disposal. When the risk 

measurement mechanism is considered, the cost associated with the penalties of violated 

variable limits is also slightly reduced (3 m.u.). Even though the expected cost increased by 

1,322.65 m.u. from the risk-neutral strategy to the risk-averse strategy, the OF value was 

reduced by around 4,124.50 m.u., which corresponds to a 13.89% decrease. That is, the risk-

based strategy implemented improved the results obtained in the cost of the extreme events, 

mainly in the worst scenario with a 51.83% reduction. 

Table 16 Cost components in the proposed strategies. 

Cost components 
Risk-neutral 

(m.u.) 

Risk-averse 

(m.u.) 

Day-ahead investment (operational costs) 21,485.23 22,272.89 

ENS costs 31.02 9.23 

Generation costs 18,283.07 19,970.01 

Market bid costs 3,171.15 2,293.66 

Market offer revenue 1,494.86 956.88 

Penalties 16.00 13.00 

Total expected cost (𝑍𝑒𝑥) 20,006.37 21,329.02 

𝑍𝑒𝑥 + 𝐶𝑉𝑎𝑅0.95 29,701.23 25,576.73 

Worst scenario 84,232.70 40,571.52 

Regarding the scheduling results obtained for the risk-based methodology, Figure 41 shows 

the day ahead scheduling results for the risk-neutral method. In this situation, the total 

generated energy obtained was 241.58 MWh, and the total energy consumed was 241.59 

MWh, which corresponds to a total of 0.01 MWh of ENS. A total of 100.52 MWh of 

renewable generation, 73.42 MWh of external supplier generation, and 67.63 MWh of 

market bids correspond to the generation side. The consumption is given by 196.93 MWh 

of load demand, 13.08 MWh of EV charging, and 31.57 MWh of market offers. Due to the 

extreme scenarios considered, the ENS occurs in three of the 24 periods of optimization, 
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which is not ideal for the aggregator. In this case, the extreme scenarios were the load 

increases, market capacity, and DR capacity decrease with the aggregator not having a 

mechanism to buy the energy needed to satisfy the load. 

 

Figure 41 Day-ahead scheduling results for the risk-neutral strategy regarding power a) 

generation; b) consumption. 

Figure 42 presents the day ahead scheduling results for the risk-averse strategy. The total 

energy/consumed was 229.58 MWh with only 3.08 kWh of ENS, a reduction of 70% from 

the previous case. This situation of ENS was only verified in period one, where previously 

the ENS was verified in periods 2,5, and 6. When it comes to the generation, a total of 100.52 

MWh of renewables was again obtained. A total of 79.11 MWh of external supplier 

generation was acquired, an increase from the risk-neutral strategy, reflecting the rise in 

generation costs shown in Table 15. A total of 49.94 MWh of market bid energy was also 

verified on the generation side. The load demand and EV charging energy values remained 

equal to the risk-neutral method, with the market offer varying from 31.57 MWh to 19.57 

MWh.  

 

Figure 42 Day-ahead scheduling results for the risk-averse strategy regarding power a) 

generation; b) consumption. 
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From these values, it can be concluded that the risk-averse strategy mainly acted when it 

comes to market offer/bids to reduce penalties and ENS since, in some extreme scenarios, 

market capacity is highly reduced. In both cases, but especially in the risk-neutral, the 

aggregator, due to the significant increase in market prices in some of the scenarios, prefers 

to buy energy from the external supplier to sell in the market to make a profit, not being 

interested in the penalty assigned to the ENS, not even using the ESSs, and EVs to meet the 

power balance constraint. 

The total cost of each scenario for both risk strategies is shown in Figure 43, representing 

the number of the specific extreme scenarios. From the figure, it is possible to observe that 

the extreme scenarios considered have mostly higher costs. In terms of the worst scenario, a 

significant reduction can be noticed from the risk-neutral to the risk-averse. This scenario is 

scenario 22, the third extreme scenario generated, given by the decrease in the external 

supplier maximum limit. 

 

Figure 43 Total scenario cost for risk-neutral and risk-averse approaches. 
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It is also worth noticing that in some extreme scenarios generated, such as scenarios 57, and 

108 the increase in costs was minimal compared to the remaining. These two scenarios 

correspond to the seventh, and tenth extreme scenarios created in which both include an 

increase in market prices and the first includes an external supplier capacity reduction and 

the second a DR limit reduction (Section 4.3). Also, in this situation, the metaheuristic 

majorly focused on reducing the cost of the worst scenario with the cost of some extreme 

scenarios even increasing, as seen in the figure. 

5.4. CHAPTER CONCLUSIONS 

The results for resource scheduling considering multiple aggregators for the hour-ahead time 

horizon have been presented in this chapter. Initially, a comparison is made with day-ahead 

in terms of cost variation for the EAs used. The smallest variation was chosen for the 

presentation of the scheduling graphs. It was found that HC2RCEDUMDA presented good 

values in the intraday simulation for aggregators 1, 3, and 4 even though it presented 

penalties for not meeting the energy balance constraint in the third one. The DE and HyDE-

DF also showed promising results in terms of cost variation from day-ahead to intraday. The 

DE with the smallest increase for the second aggregator and the HyDE-DF with the best 

value presented in intraday for the EVs aggregator. This one has a high number of variables 

and constraints, which makes the problem more complex for this aggregator. In terms of 

performance, through a mean and standard deviation test and a statistical test, it was possible 

to see that CUMDANCauchy++ presented the best performance. Also, in this chapter, the 

results for the simulations that consider the risk scenarios were presented. The risk aversion 

methodology seems more advantageous for the aggregator because it reduces the costs of 

the OF from risk-averse to risk-neutral even though the operational costs are more expensive, 

i.e., even making a more significant investment. 
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6. CONCLUSIONS 

This chapter provides the conclusions to the developed work when considering the intraday 

ERM for multiple aggregators, and the risk-based optimal ERM in the day-ahead. The 

projected work for the future taking into consideration the model described is also presented. 

6.1. FINAL CONCLUSIONS 

Given the significant penetration of distributed energy resources in a DN, this thesis 

provided several aggregators' efficient intraday energy resource scheduling. The intraday 

management used an hour-ahead model with four 15-minute periods and transactions on a 

LEM to meet the energy balance equation. To plan their available resources, the optimization 

problem was solved using several metaheuristics. 

In the optimization model each of the five aggregators must consider the day-ahead 

management results, the results of the previous hour of optimization, and the intraday 

uncertainty. A low variation should be expected when comparing hour-ahead to day-ahead 

results, so that the day-ahead scheduling has been well made.  Still, a slight increase in costs 

is expected in relation to the day-ahead due to the variation in forecasts (more accurate 

forecasts). In some cases, because of the stochastic nature of the metaheuristics', some 

aggregators decrease their intraday costs. In fact, it was verified that the first four aggregators 
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presented variations up to the 5% mark with the best results having less than a 3% 

increase/decrease. It can be stated that the adopted method is particularly weak when it 

comes to the EV aggregator (aggregator 5) because there are significant differences when 

compared to the day-ahead around a 20% decrease in costs is verified in three EAs with DE 

and HC2RCEDUMDA presenting the highest increase in excess of 300%. In this situation, 

a signaling method [22] could be implemented for EV charging. Due to the minimal number 

of variables in the hour-ahead model and low optimization time obtained, a deterministic 

approach could also be preferable since it allows an optimal solution. 

CUMDANCauchy++, the winner of the "2020 Competition on Evolutionary Computation 

in the Energy Domain: Smart Grid Applications" that addressed an energy resource 

scheduling optimization problem was compared to the other optimization algorithms, 

namely DE, HyDE-DF, DEEDA, and HC2RCEDUMDA, using a signed-rank statistical test. 

As expected, CUMDANCauchy++ was quite competitive in this problem, losing primarily 

on aggregator three versus DE, HyDE-DF, and DEEDA, and aggregator four against DE. 

This method and the DEEDA algorithm perform similarly on most simulations, recalling 

that DEEDA, similarly to CUMDANCauchy, uses an EDA to generate a new population 

using Normal and Cauchy distributions. It is possible to conclude that algorithms that 

incorporate EDAs present better performance for the ERM problem. 

A risk-based methodology was also applied for the day-ahead scheduling problem when 

considering one aggregator in the DN. The results suggest claiming that the risk mechanism 

allows obtaining a better and more robust solution even with the 4% increase in operational 

costs and the 6.2% increase in expected costs. This situation occurs by reducing the risk 

measuring parameters (VaR and CVaR) and the cost of the worst-case scenario. In other 

words, by opting for this solution, the aggregator reduces its risk in the event that the worse 

scenarios happen, namely with a 13.86% reduction in cost. 

6.2. FUTURE WORK 

For future work, it is necessary to perform a scenario generation similar to what was done in 

the day-ahead to obtain more precise results. The proposed hour-ahead model should be 

improved because the optimization is done independently for each hour in this work, thus 

losing the possibility of shifting the load/discharge of ESSs and EVs to more favorable 
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periods. A comparison of the solutions obtained through metaheuristics with deterministic 

methods will also be performed to determine which method is best to implement.  

The network constraints were not initially considered for the proposed model, as the 

aggregators are limited to only performing the ERM independent of each other without DSO 

communication. It is required to perform an analysis of the congestion and constraints 

imposed on DN for the results obtained in the scheduling of each aggregator through power 

flow and optimal power flow techniques. Flexibility strategies to manage congestion and 

network violations will also be implemented for the outcomes obtained. 

As far as the risk strategy is concerned, it will be implemented for the day-ahead and 

intraday, considering all the aggregators proposed here to evaluate the safety of their 

solutions when considering worst-case scenarios. To this end, a tool for creating these risk 

scenarios will be implemented, since for this work the extreme scenarios were created 

manually. A risk factor (β) analysis will also be implemented, perhaps considering various 

confidence levels of α. 
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