965 research outputs found

    Robust grasping under object pose uncertainty

    Get PDF
    This paper presents a decision-theoretic approach to problems that require accurate placement of a robot relative to an object of known shape, such as grasping for assembly or tool use. The decision process is applied to a robot hand with tactile sensors, to localize the object on a table and ultimately achieve a target placement by selecting among a parameterized set of grasping and information-gathering trajectories. The process is demonstrated in simulation and on a real robot. This work has been previously presented in Hsiao et al. (Workshop on Algorithmic Foundations of Robotics (WAFR), 2008; Robotics Science and Systems (RSS), 2010) and Hsiao (Relatively robust grasping, Ph.D. thesis, Massachusetts Institute of Technology, 2009).National Science Foundation (U.S.) (Grant 0712012

    Fine intervals are required when using point intercept transects to assess coral reef status

    Get PDF
    The Point Intercept Transect (PIT) method has commonly been used in recent decades for estimating the status of coral reef benthic communities. It is a simple method that is efficiently performed underwater, as benthic components are recorded only as presence or absence at specific interval points along transects. Therefore, PIT is also popular in citizen science activities such as Reef Check programs. Longer intervals are commonly associated with longer transects, yet sampling interval length can significantly influence benthic coverage calculations. Despite this, the relative accuracy of longer or shorter intervals related to transect length has not been tested for PIT. In this study, we tested the optimum intervals of PIT for several commonly used transect lengths using the bootstrap method on empirical data collected on tropical coral reefs and non-reefal coral communities. Our results recommend fine intervals of 10 cm or shorter, depending on the length of the transect, to increase the accuracy of estimating benthic community status on coral reefs. Permanent transects should also be considered in long-term monitoring programs to improve data quality

    Mechanical Activation of Hypoxia-Inducible Factor 1α Drives Endothelial Dysfunction at Atheroprone Sites

    Get PDF
    OBJECTIVE: Atherosclerosis develops near branches and bends of arteries that are exposed to low shear stress (mechanical drag). These sites are characterized by excessive endothelial cell (EC) proliferation and inflammation that promote lesion initiation. The transcription factor HIF1α (hypoxia-inducible factor 1α) is canonically activated by hypoxia and has a role in plaque neovascularization. We studied the influence of shear stress on HIF1α activation and the contribution of this noncanonical pathway to lesion initiation. APPROACH AND RESULTS: Quantitative polymerase chain reaction and en face staining revealed that HIF1α was expressed preferentially at low shear stress regions of porcine and murine arteries. Low shear stress induced HIF1α in cultured EC in the presence of atmospheric oxygen. The mechanism involves the transcription factor nuclear factor-κB that induced HIF1α transcripts and induction of the deubiquitinating enzyme Cezanne that stabilized HIF1α protein. Gene silencing revealed that HIF1α enhanced proliferation and inflammatory activation in EC exposed to low shear stress via induction of glycolysis enzymes. We validated this observation by imposing low shear stress in murine carotid arteries (partial ligation) that upregulated the expression of HIF1α, glycolysis enzymes, and inflammatory genes and enhanced EC proliferation. EC-specific genetic deletion of HIF1α in hypercholesterolemic apolipoprotein E-defecient mice reduced inflammation and endothelial proliferation in partially ligated arteries, indicating that HIF1α drives inflammation and vascular dysfunction at low shear stress regions. CONCLUSIONS: Mechanical low shear stress activates HIF1α at atheroprone regions of arteries via nuclear factor-κB and Cezanne. HIF1α promotes atherosclerosis initiation at these sites by inducing excessive EC proliferation and inflammation via the induction of glycolysis enzymes

    Forefoot pathology in rheumatoid arthritis identified with ultrasound may not localise to areas of highest pressure: cohort observations at baseline and twelve months

    Get PDF
    BackgroundPlantar pressures are commonly used as clinical measures, especially to determine optimum foot orthotic design. In rheumatoid arthritis (RA) high plantar foot pressures have been linked to metatarsophalangeal (MTP) joint radiological erosion scores. However, the sensitivity of foot pressure measurement to soft tissue pathology within the foot is unknown. The aim of this study was to observe plantar foot pressures and forefoot soft tissue pathology in patients who have RA.Methods A total of 114 patients with established RA (1987 ACR criteria) and 50 healthy volunteers were assessed at baseline. All RA participants returned for reassessment at twelve months. Interface foot-shoe plantar pressures were recorded using an F-Scan® system. The presence of forefoot soft tissue pathology was assessed using a DIASUS musculoskeletal ultrasound (US) system. Chi-square analyses and independent t-tests were used to determine statistical differences between baseline and twelve months. Pearson’s correlation coefficient was used to determine interrelationships between soft tissue pathology and foot pressures.ResultsAt baseline, RA patients had a significantly higher peak foot pressures compared to healthy participants and peak pressures were located in the medial aspect of the forefoot in both groups. In contrast, RA participants had US detectable soft tissue pathology in the lateral aspect of the forefoot. Analysis of person specific data suggests that there are considerable variations over time with more than half the RA cohort having unstable presence of US detectable forefoot soft tissue pathology. Findings also indicated that, over time, changes in US detectable soft tissue pathology are out of phase with changes in foot-shoe interface pressures both temporally and spatially.Conclusions We found that US detectable forefoot soft tissue pathology may be unrelated to peak forefoot pressures and suggest that patients with RA may biomechanically adapt to soft tissue forefoot pathology. In addition, we have observed that, in patients with RA, interface foot-shoe pressures and the presence of US detectable forefoot pathology may vary substantially over time. This has implications for clinical strategies that aim to offload peak plantar pressures

    Lessons Learned of NSPO’s Picosatellite Mission: Yamsat - 1A, 1B & 1C

    Get PDF
    The YamSat is the first developed picosatellite in National Space Program Office’s (NSPO), Taiwan, R.O.C. It is scheduled to flight in the CubeSat launch in 2003. The rapid-prototyping system engineering different from the past formal discipline opens a new satellite development model in NSPO. The YamSat Test Readiness Review Meeting was successfully held in January 2002 and the environmental tests were completed by end March 2002. Besides the breadboard model and engineering test bed to prove of operation concept are built, three YamSats (1A, 1B, & 1C) instead of one are manufactured with slightly different configurations and purposes. The YamSat- 1A is for flight with ambitious and novel R.O.C. made components, including 15 domestic organizations and companies’ participation. The YamSat-1B is basically for backup purpose and demonstration, whereas the YamSat-1C is for amateur communication experiment end-to-end field test, and for public education purpose. This new experience gives fruitful lessons learned and provides low cost space experimentation and education to the next built picosatellites in Taiwan’s universities. Detailed mission and lessons learned are addressed in this paper

    Simulation of dimensionality effects in thermal transport

    Full text link
    The discovery of nanostructures and the development of growth and fabrication techniques of one- and two-dimensional materials provide the possibility to probe experimentally heat transport in low-dimensional systems. Nevertheless measuring the thermal conductivity of these systems is extremely challenging and subject to large uncertainties, thus hindering the chance for a direct comparison between experiments and statistical physics models. Atomistic simulations of realistic nanostructures provide the ideal bridge between abstract models and experiments. After briefly introducing the state of the art of heat transport measurement in nanostructures, and numerical techniques to simulate realistic systems at atomistic level, we review the contribution of lattice dynamics and molecular dynamics simulation to understanding nanoscale thermal transport in systems with reduced dimensionality. We focus on the effect of dimensionality in determining the phononic properties of carbon and semiconducting nanostructures, specifically considering the cases of carbon nanotubes, graphene and of silicon nanowires and ultra-thin membranes, underlying analogies and differences with abstract lattice models.Comment: 30 pages, 21 figures. Review paper, to appear in the Springer Lecture Notes in Physics volume "Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer" (S. Lepri ed.

    Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization

    Get PDF
    Research PaperThe A&P approach, developed by Allen and Pereira (2009), estimates single and basal crop coefficients (Kc and Kcb) from the observed fraction of ground cover (fc) and crop height (h). The practical application of the A&P for several crops was reviewed and tested in a companion paper (Pereira et al., 2020). The current study further addresses the derivation of optimal values for A&P parameter values representing canopy transparency (ML) and stomatal adjustment (Fr), and tests the resulting model performance. Values reported in literature of ML and Fr were analysed. Optimal ML and Fr values were derived by a numerical search that minimized the differences between Kcb A&P with standard Kcb for vegetable, field, and fruit crops as tabulated by Pereira et al. (2021a, 2021b) and Rallo et al. (2021). Sources for fc were literature reviews supplemented by a remote sensing survey. Computed Kcb and Kc for mid- and end-season together with associated parameters values were tabulated. To improve the usability of the ML and Fr parameters a cross validation was performed, which consisted of the linear regression between Kcb computed by A&P and observed Kcb relative to independent data sets obtained from field observations. Results show that both series of Kcb match well, with regression coefficients very close to 1.0, coefficients of determination near 1.0, and root mean square errors (RMSE) of 0.06 for the annual crops and RMSE = 0.07 for the trees and vines. These errors represent less than 10% of most of the computed tabulated Kcb. The tabulated Fr and ML of this paper can be regarded as defaults to support A&P field practice when observations of fc and h are performed. Therefore, the A&P approach shows to be appropriate for use in irrigation scheduling and planning when fc and h are observed using ground and/or remote sensing, hence supporting irrigation water savingsinfo:eu-repo/semantics/publishedVersio

    Derivation of irrigation requirements for radiological impact assessments

    Get PDF
    When assessing the radiological impacts of radioactive waste disposal, irrigation using groundwater contaminated with releases from the disposal system is a principal means of crop and soil contamination. In spite of their importance for radiological impact assessments, irrigation data are scarce and often associated with considerable uncertainty for several reasons including limited obligation to measure groundwater abstraction and differences in measuring methodologies. Further uncertainty arises from environmental (e.g. climate and landscape) change likely to occur during the assessment long time frame. In this paper, we derive irrigation data using the crop growth AquaCrop model relevant to a range of climates, soils and crops for use in radiological impact assessments. The AquaCrop estimates were compared with actual irrigation data reported in the literature and with estimates obtained from simple empirical methods proposed for use in radiological impact assessments. Further, the AquaCrop irrigation data were analysed using mixed effects modelling to investigate the effects of climate, soil and crop type on the irrigation requirement. Irrigation estimates from all models were within a reasonable range of the measured values. The AquaCrop estimates, however, were at the higher end of the range and higher than those from the empirical methods. Nevertheless, they may be more appropriate for conservative radiological assessments. The use of mixed effects modelling allowed for the characterisation of crop-specific variability in the irrigation data, and in contrast to the empirical methods, the AquaCrop and the mixed effects models accounted for the soil effect on the irrigation requirement. The approach presented in this paper is relevant for obtaining irrigation data for a specific site under different climatic conditions as well as for generic dose assessments. To the best of our knowledge, this is one of the most comprehensive analyses of irrigation data in the context of radiological impact assessment currently available
    corecore