3 research outputs found

    Magnetic Zinc Oxide/Manganese Ferrite Composite for Photodegradation of the Antibiotic Rifampicin

    No full text
    In this study, a composite of zinc oxide and manganese ferrite was synthesized using co-precipitation and hydrothermal routes, to be used as photocatalysts in reactions with UV/Vis light source. The synthesized materials were characterized by FTIR, XRD, and SEM, where it was possible to verify the efficiency of the syntheses performed, through the identification of the resulting phases, the evaluation of the structural morphology of the particles, and the analysis of the detachments of the main vibration bonds present in these materials. The composite ZnO/MnFe2O4 was used in photodegradation reactions of the antibiotic rifampicin, with catalyst dosage of 0.20; 0.40, and 0.60 g and 10 ppm of rifampicin, reactions using pure ZnO as a catalyst were also performed as a comparative parameter of the influence of MnFe2O4 in this system. The composite ZnO/MnFe2O4 showed a maximum percentage of rifampicin decontamination of 94.72% and ZnO, 74.20%using 0.20 g of photocatalyst after 90 min, which indicates a positive influence on this process. The solution treated with ZnO/MnFe2O4 was subjected to magnetic field induction for attraction and consequently accelerated removal of the solids present, successfully, compacting for the application of ZnO/MnFe2O4 to be presented as a promising material for decontamination of emerging pollutants through photocatalytic reactions

    Characterisation of microbial attack on archaeological bone

    Get PDF
    As part of an EU funded project to investigate the factors influencing bone preservation in the archaeological record, more than 250 bones from 41 archaeological sites in five countries spanning four climatic regions were studied for diagenetic alteration. Sites were selected to cover a range of environmental conditions and archaeological contexts. Microscopic and physical (mercury intrusion porosimetry) analyses of these bones revealed that the majority (68%) had suffered microbial attack. Furthermore, significant differences were found between animal and human bone in both the state of preservation and the type of microbial attack present. These differences in preservation might result from differences in early taphonomy of the bones. © 2003 Elsevier Science Ltd. All rights reserved
    corecore