83 research outputs found

    Tracing the Bioavailability of Three-Dimensional Graphene Foam in Biological Tissues

    Get PDF
    This is the final version of the article. Available from MDPI via the DOI in this record.Graphene-based materials with a three-dimensional (3D) framework have been investigated for a variety of biomedical applications because of their 3D morphology, excellent physiochemical properties, volume stability, and their controllable degradation rate. Current knowledge on the toxicological implications and bioavailability of graphene foam (GF) has major uncertainties surrounding the fate and behavior of GF in exposed environments. Bioavailability, uptake, and partitioning could have potential effects on the behavior of GF in living organisms, which has not yet been investigated. Here, we report a pilot toxicology study on 3D GF in common carps. Our results showed that GF did not show any noticeable toxicity in common carps, and the antioxidant enzymatic activities, biochemical and blood parameters persisted within the standard series. Further histological imaging revealed that GF remained within liver and kidney macrophages for 7 days without showing obvious toxicity. An in vivo study also demonstrated a direct interaction between GF and biological systems, verifying its eco-friendly nature and high biocompatibility.This work was supported by EPSRC Centre for Doctoral Training in Metamaterials, XM2 (Grant No. EP/L015331/1) University of Exeter EX4 4QF, United Kingdom

    Biocompatibility behavior and biomedical applications of Ti-Ni based shape memory alloys: a brief review

    Get PDF
    Shape memory alloys provide new areas for the design of biomaterials in biomedical engineering and also for the design of artificial hard tissues and surgical instruments, since they have definite distinctiveness and remarkable characteristics. This study will look at the biocompatibility behavior of Ti-Ni based shape memory alloys and its medical applications with high possible for improving the present and future quality of bioengineering. In particular, the biocompatibility behavior, vivo and vitro corrosion analysis, histological studies of tissues, vitro and vivo cytotoxicity and applications of Ti-Ni based shape memory alloys in the fields of Cardiovascular, Gastroenterology and Urology, Orthopedics and bone-related purposes have been discussed in this paper

    Histopathological changes and antioxidant responses in common carp (Cyprinus carpio) exposed to copper nanoparticles

    Get PDF
    This is the author accepted manuscript. The final version is available from Taylor & Francis via the DOI in this recordDespite the rapid increase of nanotechnology in a wide array of industrial sectors, the biosafety profile of nanomaterials remains undefined. The accelerated use of nanomaterials has increased the potential discharge of nanomaterials into the environment in different ways. The aquatic environment is mainly susceptible as it is likely to act as an ultimate sink for all contaminants. Therefore, this study assessed the toxicological impacts of waterborne engineered copper nanoparticles (Cu-NPs) on histology, lipid peroxidation (LPO), catalase (CAT), and glutathione (GSH) levels in the gills of common carp (Cyprinus carpio). Nanoparticles were characterized by XRD and SEM techniques. Before starting the sub-acute toxicity testing, 96 h LC50 of Cu-NPs for C. carpio was calculated as 4.44 mg/l. Then based on LC50, C. carpio of 40–45 g in weight were exposed to three sub-lethal doses of waterborne engineered Cu-NPs (0 or 0.5 or 1 or 1.5 mg/l) for a period of 14 days. The waterborne Cu-NPs have appeared to induce alterations in gill histology and oxidative stress parameters in a dose-dependent manner. The gill tissues showed degenerative secondary lamellae, necrotic lamella, fused lamella, necrosis of the primary and secondary lamella, edema, complete degeneration, epithelial lifting, degenerative epithelium, and hyperplasia in a dose-dependent manner. In the gill tissues, waterborne Cu-NPs caused a decreased level of CAT and elevated levels of LPO, and GSH in the fish exposed to the highest dose of 1.5 mg Cu-NPs/l of water. Our results indicate that the exposure to waterborne Cu-NPs was toxic to the aquatic organisms as shown by the oxidative stresses and histological alterations in C. carpio, a freshwater fish of good economic value

    Biocompatibility and toxicity of graphene quantum dots for potential application in photodynamic therapy

    Get PDF
    This is the author accepted manuscript. The final version is available from Future Medicine via the DOI in this recordAim: Achieving reliably high production of reactive oxygen species (ROS) in photodynamic therapy (PDT) remains challenging. Graphene quantum dots (GQD) hold great promise for PDT. However, the photochemical processes leading to GQD-derived ROS generation have not yet been fully elucidated. Materials & methods: Physicochemical characteristics of GQDs were comprehensively investigated, including electron paramagnetic resonance analysis of singlet oxygen production. Dark toxicity was assessed in vitro and in vivo. Results: GQDs demonstrated excellent photo-luminescent features, corrosion resistance, high water solubility, high photo/pH-stability, in vitro and in vivo biocompatibility and very efficient singlet oxygen/ROS generation. Conclusion: The enhanced ROS generation, combined with good biocompatibility and minimal toxicity in vitro and in vivo support the potential of GQDs for future PDT application.This work was supported by the EPSRC Centre for Doctoral Training in Metamaterials, XM2 (grant number EP/L015331/1

    Epigenetic Factors in Cancer Risk: Effect of Chemical Carcinogens on Global DNA Methylation Pattern in Human TK6 Cells

    Get PDF
    In the current study, we assessed the global DNA methylation changes in human lymphoblastoid (TK6) cells in vitro in response to 5 direct and 10 indirect-acting genotoxic agents. TK6 cells were exposed to the selected agents for 24 h in the presence and/or absence of S9 metabolic mix. Liquid chromatography-mass spectrometry was used for quantitative profiling of 5-methyl-2′-deoxycytidine. The effect of exposure on 5-methyl-2′-deoxycytidine between control and exposed cultures was assessed by applying the marginal model with correlated residuals on % global DNA methylation data. We reported the induction of global DNA hypomethylation in TK6 cells in response to S9 metabolic mix, under the current experimental settings. Benzene, hydroquinone, styrene, carbon tetrachloride and trichloroethylene induced global DNA hypomethylation in TK6 cells. Furthermore, we showed that dose did not have an effect on global DNA methylation in TK6 cells. In conclusion we report changes in global DNA methylation as an early event in response to agents traditionally considered as genotoxic

    Effect of Chemical Mutagens and Carcinogens on Gene Expression Profiles in Human TK6 Cells

    Get PDF
    Characterization of toxicogenomic signatures of carcinogen exposure holds significant promise for mechanistic and predictive toxicology. In vitro transcriptomic studies allow the comparison of the response to chemicals with diverse mode of actions under controlled experimental conditions. We conducted an in vitro study in TK6 cells to characterize gene expression signatures of exposure to 15 genotoxic carcinogens frequently used in European industries. We also examined the dose-responsive changes in gene expression, and perturbation of biochemical pathways in response to these carcinogens. TK6 cells were exposed at 3 dose levels for 24 h with and without S9 human metabolic mix. Since S9 had an impact on gene expression (885 genes), we analyzed the gene expression data from cells cultures incubated with S9 and without S9 independently. The ribosome pathway was affected by all chemical-dose combinations. However in general, no similar gene expression was observed among carcinogens. Further, pathways, i.e. cell cycle, DNA repair mechanisms, RNA degradation, that were common within sets of chemical-dose combination were suggested by clustergram. Linear trends in dose–response of gene expression were observed for Trichloroethylene, Benz[a]anthracene, Epichlorohydrin, Benzene, and Hydroquinone. The significantly altered genes were involved in the regulation of (anti-) apoptosis, maintenance of cell survival, tumor necrosis factor-related pathways and immune response, in agreement with several other studies. Similarly in S9+ cultures, Benz[a]pyrene, Styrene and Trichloroethylene each modified over 1000 genes at high concentrations. Our findings expand our understanding of the transcriptomic response to genotoxic carcinogens, revealing the alteration of diverse sets of genes and pathways involved in cellular homeostasis and cell cycle control

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely
    corecore