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Abstract: 

 

Aim: Achieving reliably high production of reactive oxygen species (ROS) in 

photodynamic therapy (PDT) remains challenging. Graphene quantum dots (GQD) 

hold great promise for PDT. However, the photochemical processes leading to GQD-

derived ROS generation have not yet been fully elucidated. Materials & methods: 

Physicochemical characteristics of GQDs were comprehensively investigated, 

including electron paramagnetic resonance analysis of singlet oxygen production. Dark 

toxicity was assessed in vitro and in vivo. Results: GQDs demonstrated excellent 

photo-luminescent features, corrosion resistance, high water solubility, high 

photo/pH-stability, in vitro and in vivo biocompatibility and very efficient singlet 

oxygen/ROS generation. Conclusion: The enhanced ROS generation, combined 

with good biocompatibility and minimal toxicity in vitro and in vivo support the 

potential of GQDs for future PDT application. 
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1. Introduction: 

 

Cancer accounts for over 8 million deaths annually. Standard treatment options 

include surgery, radio/chemotherapy and photodynamic therapy (PDT). The latter 

can be a particularly effective modality in the treatment of superficial tumors such as 

basal cell carcinoma, but has limitations due to low yields of reactive oxygen species 

(ROS) plus unwanted side effects. Therapeutic and diagnostic techniques based on 

quantum dots (QDs) are emerging as a promising paradigm for the battle against life 

threatening conditions including cancer, renovascular and cardiovascular disease, 

intestinal inflammatory bowel disease and neurodegenerative diseases[1-4] **. The 

wide-ranging biological applications of QDs are due to their unique particle size, 

excellent photo-physical properties, luminescent features and biocompatibility[5,6] *. 

The photoluminescence features of QDs derived from radiative recombination result 

in a long-lived electron-hole pair to produce a metastable state similar to the long-

lived triplet state of photosensitisers (PS) and provide a cytotoxic mechanism for the 

production of singlet oxygen and other ROS [7,8]. Photo-induced electron transfer 

reactions of QDs have therefore recently been envisioned as potential PS for PDT. 

PDT is a highly selective approach to ablate tumors, without damaging surrounding 

tissues. Effective PDT requires three key components: a PS; light and oxygen. The 

combination of these three leads to the production of ROS. These highly reactive 

species result in a shift of redox balance and trigger the activation of transcription 

factors implicated in the initiation of cell death signalling via apoptosis and/or 

necrosis. The efficacy of PDT mainly relies on the yield of singlet oxygen and other 

ROS production by a PS and this yield depends on the nature of PS involved[9,10]. 

Despite several leaps forward, a critical challenge still remains in relation to the 

inadequate oxygen supply in tumors and incapability of selectively localizing 

diagnostic probes and drugs at tumors sites for the purposes of early diagnosis and 

effective treatment[11,12]. One emerging strategy is to synthesize nanoplatforms which 

may achieve higher ROS yield. However the current applications of QDs are often 

limited by poor water dispersibility, poor photostability, low singlet oxygen and other 

ROS generation yield, low biocompatibility, and a lack of imaging and therapeutic 

functions without attaching biomolecules or antibodies[13,14]. 
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Graphene quantum dots (GQDs) are among the latest frontiers of research on 

graphene (two dimensional monolayered carbon materials with aromatic substructure) 

[15] **. They are typically derived from graphene/graphite or other 3D graphitic 

materials by various approaches and exist as mono or few-layered structures with a 

lateral dimension up to 100 nm[16]. Lower production of ROS and the intrinsic toxicity 

of conventional organic photosensitizers such as liposomes and polymeric 

nanoparticles limit their clinical applications in PDT [17]. GQDs have many advantages 

over conventional organic photosensitizers, such as chemical inertness, high water 

solubility, photo-stability, interplay between optoelectronic features and shape/size, 

good donors in the fluorescence resonance energy transfer process, high stability in 

physiological conditions, specific accumulation at the target site and facile surface 

functionalization. These features therefore make GQDs promising candidates in 

novel delivery systems for target-specific photosensitization [18 ** - 21] due to their 

photoluminescence (PL) properties[22,23], quantum confinement and edge effects[24]. 

Considerable efforts are being made to understand the interplay of features such as 

size and shape, in concert with the type and quantity of additional functional groups, 

for the generation of PL, as well as capacity to act as energy donors for conventional 

photosensitizers [16,22-24]. The energy transfer between GQDs and cell molecules, 

such as triplet oxygen, could potentially induce the generation of reactive oxygen 

species, thus provoking cellular apoptosis. The light-mediated cytotoxicity of GQDs, 

together with their energy-donor capacity, could therefore open a new area for GQD 

research in the life sciences - as direct theranostics or as cofactors or components of 

conventional photosensitizing agents used in PDT. Recent studies have investigated 

alternative syntheses and PDT-applicability of GQDs with encouraging results[25-27]. 

Although promising, GQDs will not achieve broad clinical applicability until concerns 

have been alleviated about toxicity from long term exposure and quantum yield of 

ROS, as well as surface dependent therapeutic responses and biological corrosion 

resistance. 

 

In the present study, we report a robust, smart and highly versatile multifunctional 

GQD which can be synthesized by exfoliation and disintegration from graphite flakes. 

We have previously reported a novel effective method to obtain water–soluble GQDs 

with higher yield (7.1 %), showing a size around 20 nm, and with the majority 

exhibiting mono-layering [28]. Crucially, we have now demonstrated limited in vivo 
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toxicity after four weeks of high dose administration in rats, and subsequently confirm 

the enhancement of singlet oxygen and other ROS generation of GQDs. The 

intensity of the electron paramagnetic resonance (EPR) signal, resulting from singlet 

oxygen generation, showed an increase which was dependent on the irradiation time. 

The ROS production from GQDs could potentially allow precise therapeutic dosing. 

In vivo toxicity experiments in rats demonstrate that our GQDs have minimal dark 

toxicity, which is a key attribute for a photosensitizer for subsequent use in 

photodynamic therapy. In this study we also have investigated water solubility, 

corrosion resistance and pH/photo-stability. This study lends further credence to the 

theranostic potential of GQDs in disease.  

 
 

2. Experimental section: 

Synthesis and Characterization of GQDs: We prepared GQDs from our 

previous established route by exfoliating and disintegrating graphite flakes [28] 

(Also see Supplementary note 2).  Atomic force microscopy (AFM) 

micrographs were taken by using a VEECO Dimension 3100 Atomic Force 

Microscope in a tapping mode with a scan rate of 0.5 Hz. Raman spectra were 

recorded on a Renishaw Raman spectrometer with a 532 nm laser beam. 

Ultraviolet-visible (UV/Vis) spectra were recorded by a PerkinElmer Lambda 

900 Spectrometer at room temperature. Electrochemical behaviour was 

examined using a CHI 660C Electrochemical Workstation with a distinctive 

three-electrode cell: Pt as the auxiliary electrode, Ag/AgCl as the reference 

electrode and gold as the working electrode (2 mm diameter), in a 0.1 M KCl 

electrolytic solution. Stability test was performed from 0.2 V to -1.0 V for 2 

hours. Impedance measurements were carried out in the frequency range of 

100 kHz to 0.1 Hz at OCP with voltage amplitude of 0.005 V. GQDs in water 

and heavy water solutions were dropped onto the mica substrate followed by 

drying at 70 °C for 5 h. A digital camera was used to record the images and 

their contact angles were calculated by PolyPro software package. 

 

In vitro toxicity: Cell proliferation was evaluated with the NIH3T3 mouse fibroblast 

cell line (purchased from the American Type Culture Collection) and 16HBE14o- 

human bronchial epithelial cell line (obtained via Dr Jo Porter, University College 
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London). NIH3T3 cells were seeded in DMEM+10% FBS, 16HBEs were seeded in 

αMEM+10% FBS (Life Technologies, UK), in 24-well plates at a density of 15x103 

cells per well, and allowed to adhere overnight. Cells were then treated with GQDs 

diluted in 50 μL tissue culture water (Life Technologies, UK) at concentrations 

ranging from 1.2 µg/ml up to 100 µg/mL. After 48 hours incubation, cells were 

trypsinized and counted using a hemocytometer to assess cell number relative to 

untreated cells. 

 

In vivo toxicity: Sprague-Dawley adult male rats (average age of 6-7 weeks, 230-

250g weight) were housed under a standard condition of a 12 hours bright/dark 

sequence with free access to food. All the investigational protocols and measures 

were approved by the ethical committee of Government College University, 

Faisalabad, Pakistan. All animals were arbitrarily divided into four experimental 

groups (control, low dose (5 mg/kg), medium dose (10mg/kg) and high dose (15 

mg/kg) of GQDs), n=8 per group. GQDs were intravenously administrated to the rats 

for 30 days with a three days pause between each injection (amounting to 8 doses 

over 30 days).  Blood samples were collected at day 1, 15 and 30, from the marginal 

ear vein, and used for complete blood count (CBC) and determination of selected 

serum biochemical parameters. Hematological parameters: Red blood cells (RBC); 

Hematocrit (HCT); Mean corpuscular volume (MCV); mean corpuscular haemoglobin 

(MCH); Hemoglobin (HGBL);  Mean corpuscular hemoglobin concentration (MCHC); 

Platelets (PLT); Lymphocytes (LYM);  Eosinophils (%); Monocytes (%);  White blood 

cells (WBC); and serum biochemical parameters: Cholesterol; triglycerides; Alanine 

transaminase (ALT); Aspartate transaminase (AST); and Total protein, all analysed in 

blood samples by using Hitachi 902 automatic analyser (Japan). The harvested 

heart, liver, lung and kidney were fixed with 4% paraformaldehyde for 5 hours and 

then dehydrated and processed for histology. 6 µm sections were cut from paraffin 

blocks using a Reichert microtome and stained with eosin (cytoplasm staining). The 

stained slides were examined by light microscopy through a 20x and 40x objective 

lens. A histological analysis of vital organs was performed to determine whether or 

not the GQDs or the degradation of GQDs caused tissue damage and/or any 

pathologic impacts such as inflammation or necrosis. 
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Detection of singlet oxygen and other reactive oxygen species: To detect 

1O2 and other reactive oxygen species being produced via photochemistry by GQDs, 

solutions of GQDs were irradiated (λmax = 365 nm, pe300-LED) in the presence of 

nitroxide spin traps 4-hydroxy-2,2,6,6-tetramethylpiperidine (TMP, a 1O2 trap, Sigma-

Aldrich), or 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO, a O2
•-, 

•OH and CH2OH trap, Enzo Life Sciences). Pre- and post-irradiation spectra were 

acquired at room temperature using a FR30 EPR spectrometer (Jeol Ltd., Welwyn 

Garden City, UK). Prior to irradiation, each sample was injected in to a Jeol quartz 

WG-LC-11 flat cell, placed into the EPR cavity and a spectrum was acquired. 

Samples were then irradiated for a given time, after which a second spectral 

acquisition was carried out. Spectral acquisition parameters for trapping of 1O2 by 

TMP were: microwave frequency 9.45 GHz, microwave power 4 mW, centre field 

3372 G, sweep width 50 G, sweep time 60 s, time constant 1 s, modulation 

frequency 25 kHz, modulation width 1.25 G with an average of 3 sweeps. Spectral 

acquisition parameters for trapping of O2
•- and •OH by DEPMPO were: microwave 

frequency 9.45 GHz, microwave power 16 mW, centre field 3372 G, sweep width 150 

G, sweep time 60 s, time constant 1 s, modulation frequency 25 kHz, modulation 

width 0.63 G with an average of 3 sweeps. As a positive control for the generation 

and detection of 1O2, solutions of protoporphyrin IX (PpIX), a well-known 

photosensitising agent, were prepared at a concentration of 10 µM, mixed with 50 

mM TMP, and irradiated (λmax = 635 nm, 25 J/cm2, Aktilite CL-16). Spectra were 

acquired pre- and post-irradiation and the detection of an increased EPR signal 

confirmed that our detection system was operating as expected. To measure the 

time-dependent generation of 1O2, GQDs were prepared in H2O at a concentration of 

1.3 mg/ml with 50 mM TMP. Spectra were acquired following the irradiation of 

separate samples for 0, 2, 5, 10 and 30 minutes, which equates to light doses of 0, 

0.24, 0.6, 1.2 and 3.6 J/cm2, respectively. The generation of 1O2 in D2O was also 

measured by EPR. GQDs were prepared in H2O or D2O at a concentration of 0.5 

mg/ml with 50 mM TMP. Spectra were acquired pre- and post-irradiation (1.8 J/cm2). 

Lastly, spectra of GQDs in H2O (0.5 mg/ml) were acquired in the presence of L-

Histidine (25 mM), a 1O2 quencher (1.8 J/cm2). The positive control for spin trapping 

by DEPMPO consisted of a hypoxanthine (HX) and xanthine oxidase (XO) 

system[29,30]. We used a solution containing 50 µM HX, 200 µM DTPA, 20 mM 

DEPMPO and 0.04 U/ml XO in PBS. Following addition of XO, the solution was 
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immediately injected into a quartz flat cell and a spectrum was acquired. GQDs (1.3 

mg/ml) were mixed with DEPMPO (20 mM) and a spectrum was acquired pre- and 

post-irradiation (1.8 J/cm2). An additional mixture, containing GQDs, DEPMPO and 

DTPA (200 µM) was also made and treated in the same manner. 

 

Statistical Analysis: Statistical analysis was performed between two treatment 

groups by unpaired Student’s t-test, and between multiple treatment groups by one-

way analysis of variance (ANOVA) with Tukey post-hoc testing or two-way ANOVA 

with Bonferroni post-hoc test, using Graphpad Prism 5 software. Results are 

presented as mean ± s.d, unless otherwise indicated. The value of p<0.05 was 

considered significant. 

 

3. Results 

 

3.1 Preparation and Basic Characterization of GQDs 

 

GQDs were prepared by following our previously established technique of exfoliating 

and disintegrating graphite flakes (GFs) [28]. The fundamental mechanism of the 

synthesis is illustrated in Supplementary Figure 1. The GQDs used herein have an 

atomic force microscopy (AFM) size around 20-40 nm (Figure 1a). AFM of the 

dispersed GQDs gave an average thickness of ~ 1 nm (Figure 1a inset), similar to 

the majority of other QDs due to equivalent size-dependent luminescent features of 

these QDs, in combination with intrinsic properties of mono-layered graphene[28,31,32]. 

GQD crystallization was confirmed by Raman spectroscopy (Figure 1b); two 

characteristic D (defect) and G modes of graphene were determined at around 1354 

and 1592 cm-1, respectively. The G peak of the GQDs was slightly blue-shifted from 

that of pure graphite and chemically-reduced graphene oxide (~1588 cm-1) [33,34], 

since GQDs prepared via this route have oxidized edges, making them water soluble 

[28]. The FTIR spectrum had two peaks: an absorption peak centered at 1637 cm-1, 

and a broad peak at 3402 cm-1 revealing O-H bonding (Supplementary Figure 2a). 

The absorptions at 1255 cm-1 and 1078 cm-1 also revealed the existence of C-H and 

C-O, respectively. The functional groups (O-H, C-H, and C=C) located at the surface 

of the GQDs act as a passivation layer. This self-passivated surface layer facilitates 

the water solubility of GQDs [35,36]. The maximum luminescence peak was centered at 
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around 460 nm (from 370 - 700 nm) at an excitation wavelength of 360 nm as 

previously reported by us [28] with quantum yield of 7.12% (Supplementary Table 1 

and Supplementary Note 1). The time resolved PL (TRPL, time-correlated single 

photon counting technique) spectra of the GQDs recorded at 460 nm with 360 nm 

excitation laser source is shown in Figure 1c. The lifetime of the luminescence can 

be fitted well with a tri-exponential function: 0.32 (14.2%, we cannot exclude that this 

fast decay may arise from the instrument response), 2.09 (39.3%) and 5.53 ns 

(46.5%) respectively. The largely nanosecond decay of luminescence suggests that 

the GQDs are promising candidate materials for optoelectronic and biologic 

applications. This synthesis and basic characterization demonstrates the 

reproducibility of our previously reported novel fabrication route.  

 

 

 

 

Figure 1. Basic characterization of GQDs. (A) Representative Atomic Force 

Microscopy image of GQDs deposited on mica substrate indicating size around 20 - 

40 nm, with a particle diameter spectrum showing the complete size distribution of 

the GQDs (overlaid); (B) Raman spectrum demonstrating peaks for D (defect) and G 

(graphene) at around 1354 and 1592 cm-1 respectively; (C) Time resolved 

photoluminescence spectrum of the prepared GQDs, demonstrating the emission 

lifetime (460 nm) following GQD excitation (360 nm) at room temperature. 

 

3.2 Photo-stability, water dispersibility and pH stability: 

 

The propensity of GQDs for anti-biofouling depends on the physicochemical 

properties of the QDs surface; key properties include the hydrophilicity of the surface 

and photo-stability. Incorporation of heavy atoms into the QDs increases the 
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probability of intersystem crossing and also increases spin orbit coupling of an 

electron (known as the internal heavy-atom effect). This effect consequently 

increases the levels of reactive oxygen species generation (see below). Water 

dispersibility and photo-stability were also measured in heavy water. The water 

contact angle (CA) was used to evaluate the wettability, hydrophilicity of the GQD 

surface and water dispersibility. The natural wettability of the surface is reflected by 

the CA parameter measured immediately through water droplets on the material 

surface. As shown in Figure 2 a-b, the contact angle for water soluble GQDs was 

11°, indicating the high hydrophilicity due to the existence of hydrophilic carboxylic 

groups[37]. The contact angle of 16° for heavy water soluble GQDs was comparable 

to water soluble GQDs as well as 21.8° on mica substrates. The hydrophilic 

behaviour of surface amphiphilicity suggested that water and heavy water soluble 

GQDs both are expected to be an attractive candidate for administration in living 

systems. The GQDs also showed good water solubility (Supplementary Figure 3). 

To further investigate the effectiveness of GQDs as an optical bio-imaging agent, the 

stability under various pH conditions was also verified. As shown in Figure 2 c, no 

obvious luminescence quenching of the corresponding PL peak (460 nm) was 

observed in various buffered solutions, demonstrating that GQDs exhibit no 

attenuation in PL intensity and that PL is largely independent of pH, which is 

favourable for bio-imaging applications. Photo-stability was also investigated over a 

period of >200 hours (Figure 2 d), showing that GQDs are highly photo-stable, which 

is also beneficial for biomedical applications. GQDs exhibited superior photo-stability 

compared to conventional QDs[38,39]. Overall, the good water dispersibility and 

solubility, effective pH stability and extraordinary photo-stability render GQDs an 

attractive alternative probe for efficient imaging in biological and biomedical 

applications. 
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Figure 2. Water dispersibility, pH stability and Photostability of GQDs. (A, B) 

Representative images and quantification of wettability in H2O and D2O, as measured 

by water contact angle, and in comparison with mica substrate; “mica substrate” is 

the control without GQD. A digital camera was used to record the images and their 

contact angles were calculated by PolyPro software package. (C) pH-stability of 

GQDs in H2O and D2O indicating that no obvious luminescence quenching of the 

corresponding photoluminescence peak (460 nm) was observed in various buffered 

solutions (shown as mean ± SD from four different experiments) and (D) photo-

stability of GQDs in H2O and D2O over a period of 200 hrs. 

 

 

3. 3 Biological corrosion resistance 

 

Corrosion resistance is known to play an important role in the biocompatibility 

assessment of bionanomaterials [40,41]. The possible release of metallic ions and 

particles through electrochemical corrosion phenomena induces inflammatory and 

toxic effects which in turn reduces the biosafety and biocompatibility of nanomaterials 
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to solve real-world clinical problems [40,42]. Corrosion resistance depends on 

morphology and number of layers of quantum dots, exposure environment and 

electrochemical fluids.  It is unclear whether GQDs are resistant to biological 

corrosion when employed in the context of bio-applications. Biological corrosion 

occurs in a complex aqueous environment through electrochemical processes,[43] 

during which GQDs are oxidized to form ions which then migrate away from the GQD 

surface as free ions[43]. To understand these electrochemical processes, we initially 

measured their cyclic voltammetry (CV) curves. As shown in Figure 3a, CV curves of 

GQDs had high currents and good rectangular shapes. Pairs of distinctive redox 

peaks occurred around -8.85 (at 0.098 V, 50 mV.s-1), 11.4 (at 0.151 V, 150 mV.s-1), 

and -9.57 μA (at -0.171 V, 100 mV.s-1), accompanied with a small redox peak that 

indicated a multistep glassy carbon ion intercalation/deintercalation[44]. These high 

redox currents suggested a good corrosion resistance of the GQD passivation layer. 

They also suggested that the passivation layer on the surface of GQDs could block 

chemical reactions between the GQDs and body tissues during bio-imaging and 

therapy treatment, preventing corrosion, and allowing for a potentially longer 

implantation time. In the CV curve, there was also a small redox peak at ~0.1 V (vs 

Ag/AgCl), most likely arising from the multiple valence states of GQDs. Figure 3b 

shows the stability curve of the GQDs recorded in an electrolytic solution. The 

stability curve shows a negligible decrease in current density, again indicating 

excellent stability, even after 2 h of continuous operation. These characteristics of 

GQDs with active sites can be attributed to the high-temperature-induced strong 

coordination between the (QDs) surface and electrolyte, and also demonstrates their 

potential as a sensitive material for electrochemical sensing and bio-imaging. We 

further used electrochemical impedance spectroscopy (EIS) to monitor the interfacial 

properties of the self-passivated electrode. The Nyquist plot is shown in Figure 3c, 

revealing a high frequency of electron transfer to the GQD surface, which can be 

ascribed to the charge-transfer resistance (Rct1= 31.70 Ω) and the double layer 

capacity (CPE1= 0.05, n=0.542) occurring at the interface between the electrode and 

the electrolyte[45]. These results confirmed that the network of GQDs provides 

remarkable electronic conductivity. In this Nyquist plot, the curve at higher 

frequencies again indicates good corrosion resistance for biological applications[46,47]. 

The potentiodynamic polarization curve of GQDs was also determined (Figure 3d); 

the initial potential was 0.2 V with a corresponding current value of -0.919 μA. The 



 

12 

 

polarization curve obtained in this study is consistent with literature [40, 48] revealing 

that polarization plot could be divided in three potential domains: (1) preliminary with 

the onset of polarization as soon as the GQDs comes in contact with the saline 

environment; (2) the region having the maximum value of current was labelled as 

partially active. There was a shift in the corrosion resistance behaviour with a positive 

potential and current value at -0.999 V and 2.6X10-6 A respectively. Furthermore, it 

was again shifted towards corrosion inhibition at -0.78 V and (3) the formation of the 

passive layer started with a rise in potential and fall in the current density. This 

behaviour demonstrated that GQDs act as a corrosion-resistant barrier because a 

passive layer develops over a short period of time. In addition, these results 

suggested that the immobilized and passivated GQDs on the electrode could retain 

their native bioactivity[44]..  

 

 

Figure 3. Electrochemical behavior of GQDs in a 0.1 M KCl electrolytic solution. 

(A) CV curves showing the cycle stability at scan rate of 50 mV.s-1; (B) stability test 

performed from 0.2 V to -1.0 V; (C) Electrochemical impedance spectroscopy 

(Nyquist plot) of GQDs. Frequency range: 100 kHz - 0.1 Hz, Voltage amplitude: 0.005 

V; (D) Potentiodynamic polarization curve. 
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3.4 In vitro and In vivo cytotoxicity: 

 

The toxicity and biosafety of GQDs has not yet been comprehensively examined[49] 

and uncertainties remain about how such nanomaterials interact with biological 

substrates, since this is also dependent on the particular physicochemical 

characteristics of different formulations. In vivo toxicity will further depend on 

pharmacokinetic and pharmacodynamic parameters as influenced by the route of 

administration, dose and time period of exposure. In vitro cell viability testing using 

GQDs at concentrations ranging from 1.2 – 100 µg/ml demonstrated no obvious 

toxicity following a 48 hr incubation with either a human bronchial epithelial cell line, 

16HBE14o-, or murine NIH3T3 fibroblasts (Figure 4 a and b); both cell types 

continued to proliferate in the presence of GQDs.  

 

To examine the in vivo cytotoxicity of GQDs, we performed a complete blood count 

(CBC), serum biochemistry and histological study of vital organs of control and 

treated rats in a dose-dependent manner (8 doses spread over a 30 day period of 

either 5, 10 or 15 mg/kg GQD). No clear toxic effect of GQDs on CBC was observed 

(Supplementary Figure 4 a-l) although there was a slight 6% reduction in platelet 

numbers in the 10 mg/kg group at 1 week, which normalised by weeks 3 and 4; 

monocyte and eosinophil fractions similarly underwent a modest dose-dependent 

reduction, although the proportion of lymphocytes remained stable and total white 

cell count was unaffected. When serum biochemical parameters were compared 

between the groups, the results similarly did not indicate any acute toxicity. An 

increase in total protein was observed at 4 weeks (for all three doses), although the 

levels remained within the normal range (Supplementary Information, Figure 5 a-e).  

 

A comprehensive post mortem histological study was then performed to assess any 

tissue interactions with GQDs. Sections of heart, kidney, liver and lung were 

examined for histopathological changes thirty days after GQD administration (at 

doses of 5, 10 and 15 mg/kg GQD). No gross abnormalities were observed, although 

some minor changes were particularly noted in the liver and lungs at the 10 and 15 

mg/kg doses of GQDs (Figure 3b and supplementary table 2 and 3 corresponding to 

their histological findings).  No significant cardiac histology changes were evident. In 

the liver, some apoptotic bodies, binuclear hepatocytes, and activated Kupffer cells 
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were identified, indicating minor alterations to liver histology, but no infiltration of 

polymorphic inflammatory cells; hepatocyte swelling due to hepatic sinusoidal 

obstruction syndrome suggests some pathological effects related to GQDs. A small 

degree of pigmentation was observed in the kidneys of rats treated with GQDs, 

possibly indicating lipofuscin deposition, but again no infiltration of inflammatory cells. 

Within the lungs, occasional giant histiocytes were observed, associated with an 

inflammatory cell infiltrate, potentially indicative of a mild foreign body reaction to the 

GQDs. Taken together, these data indicate that GQD treatment did not result in overt 

acute toxicity, although the minor histopathological changes, particularly in the liver 

and lungs, warrant long-term observation in future studies. 
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Figure 4. In vitro and in vivo toxicity of GQDs. (A) Effect of GQDs on human 

bronchial epithelial cell (16HBE14o-) viability after 48 hours incubation, relative to 

untreated control cells; (B) Effect of GQDs on murine fibroblast (NIH3T3) viability 

after 48 hours incubation, relative to untreated control cells. Data were analysed by 

one-way ANOVA with a Tukey multiple comparisons test; no significant differences 

were observed; (C) Histological evaluation of the vital organs of rats at 4 weeks after 

intravenous injection of GQDs. Tissues of low, medium and high dose of GQD-

treated rats were similar to those of the control group. In the control livers, 

hepatocytes were arranged in cord like pattern (arrowhead). In this section, the 
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hepatic triad is marked as arrow. Following low dose GQDs, Kupffer cells were 

evident (arrow). At medium dose GQD, some apoptotic bodies were evident 

(arrowhead) and occasional binuclear hepatocytes were also seen (arrow). At the 

high dose of GQDs, no infiltration of polymorphic inflammatory cells was seen; 

Kupffer cells were still evident (arrowhead) and some apoptotic bodies were clearly 

seen (arrow). In the kidney, renal corpuscles are shown, with healthy renal epithelium 

indicated by an arrowhead. While in low, medium and high dose treated tissues, 

cytoplasmic vacuolation were seen in renal tubular epithelial cell (arrow) but there 

was no evidence of inflammatory cells in renal parenchyma. In the control lung, 

normal alveoli (arrowhead) and bronchioles (arrow) are shown in untreated lung 

tissue. Some interstitial inflammatory infiltration was seen after low dose GQD 

(arrow), while giant histiocytes were present in medium dose-treated lung 

parenchyma (arrow). Pigmented alveolar macrophages were present in high dose 

GQD lung tissue (arrowhead). In control and low dose heart tissue, myofibers were in 

a normal arrangement with healthy nuclei (arrow). There was some brown 

pigmentation present in the parenchyma (arrow) following medium dose GQDs. 

Healthy nuclei were seen in myofibers (arrowhead) and also some brown 

pigmentation (arrow) following administration of high dose GQD. Representative 

images shown (n = 8 rats per group), x200 original magnification. 

 

 

3.5 Singlet oxygen generation and reactive oxygen species: 

 

To further investigate the potential of GQDs for PDT, the singlet oxygen generation 

capacity of GQDs was verified and their PL in H2O and D2O was also measured 

(Supplementary Figure 6 shows the absorbance and PL of GQDs in H2O and D2O.). 

The lifetime of singlet oxygen in heavy water is 10 times longer than in water[50]; 

solutions were therefore prepared by adding 0.1 mg of GQD powder into 5 mL of H2O 

or 5 mL of D2O, respectively. It was observed that the blue shift in D2O was only a 

little quicker than in H2O because the singlet oxygen is formed on the GQDs surface 

by energy transfer from the GQDs. The O2 molecules involved in oxidation are likely 

to intercalate onto the surface[50]. Hence, singlet oxygen was responsible for the PL 

shift of the GQDs. Figure 5 a shows a schematic of the mechanism for the singlet 

oxygen generation from a PDT photosensitizing agent. To further monitor the singlet 
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oxygen generation, EPR spectra were recorded under different irradiation conditions 

and it was observed that the intensity of the signal, resulting from singlet oxygen 

generation, showed an increase which was dependent on the irradiation time (Figure 

5 b). EPR signals arising from the spin trapping of superoxide were also observed 

(Figure 5 c). These results confirm that energy transfer from GQDs to oxygen is 

responsible for the excitation of ground state oxygen[51,52]. By utilising the nitroxide 

spin trap, TMP, in conjunction with EPR spectrometry, we were able to demonstrate 

that, upon irradiation, GQDs generate 1O2 and that this occurs in a light dose-

dependent manner. TMP traps 1O2, producing the stable radical  TEMPOL, which 

has hyperfine splitting of aN = 16.3. The small TMP signal observed prior to 

irradiation (0 J/cm2) was attributable to low-level contamination from the 

manufacturing process of TMP, as this signal was also observed in solutions of TMP 

alone (data not shown). As the irradiation time (and thus the light dose) was 

increased, the concentration of 1O2 generated increased in a linear manner (R2 = 

0.98, data not shown), as indicated by an increasing signal. To further demonstrate 

that the observed signal(s) were arising from the trapping of 1O2 by TMP, 

experiments were also carried out in D2O and in the presence of the 1O2 quencher, L-

histidine. When generated in D2O, 1O2 has a significantly longer lifetime, which was 

demonstrated here by a 44% increase in the concentration of the TMP reaction 

product detected post-irradiation. In the presence of L-histidine, no appreciable  EPR 

signal was observed, indicating complete quenching of 1O2 
[53,54]. The complete lack 

of signal, including that arising from the previously described contamination, is likely 

to be due to the generation of other reactive oxygen species (as described below), 

which are known to oxidise the product, arising from the reaction of 1O2 with TMP, to 

the “EPR silent” hydroxylamine form [55]. Thus, in the absence of any 1O2 generation, 

the signal is completely eliminated. In addition, L-histidine only chemically and 

physically quenches/captures singlet oxygen and does not do the same with 

electrons. Thus the formation of the TEMPOL adduct must be caused by singlet 

oxygen reacting with TMP and not by electron transfer between photoexcited GQDs 

and TMP. If a proportion of the adduct formation was caused by electron transfer, 

then we would expect to see a decreased signal, not the complete absence of a 

signal that we observed with L-histidine. Evidence supports the view that L-histidine 

does not affect electron transfer [54,55]. We have also established that GQDs generate 

O2
•- and •OH and during irradiation. Irradiation of GQDs in the presence of DEPMPO 
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resulted in an EPR signal comprised of the DEPMPO-OOH and DEPMPO-OH spin 

adducts (aN = 13.4, aP = 52.5, aH = 11.9 and aN = 14, aP = 47, aH = 13; Figure 5 d, 

upper spectrum), indicating the generation of superoxide and hydroxyl radicals, 

respectively. Addition of the metal chelator DTPA inhibited the generation of hydroxyl 

radicals [56], leaving the DEPMPO-OOH signal (aN = 13.4, aP = 52.5, aH = 11.9; 

Figure 5 d, lower spectrum). 
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Figure 5. Singlet oxygen and reactive oxygen species generation by GQDs.  (A) Schematic diagram of singlet oxygen generation through energy transfer 
with an excited photosensitizer; this figure has been adopted with permission from reference 9. (B) Time-dependent electron paramagnetic resonance signals of 
GQD solutions mixed with TMP. Signal intensity increased with increasing irradiation time (λmax = 365 nm). (C) Electron paramagnetic resonance spectra 
following irradiation of GQDs (in H2O and D2O) in the presence of TMP. Addition of the 1O2 quencher, L-histidine (L-his) completely attenuated the signal. (D) 
Electron paramagnetic resonance spectra of GQDs in DEPMPO. No signals were observed in the dark, but clear signals were observed following irradiation (λmax 
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= 365 nm) indicating generation of •OH and O2
•-. Addition of the transition metal chelator DTPA to remove •OH radicals had little effect on the spectrum, indicating 

that O2
•- was the dominant species. 
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4. Discussion: 

 

PDT has been regarded as a minimally invasive treatment modality and widely 

applied in clinics for various types of cancer treatment [57-58]. Compared to 

conventional therapies, PDT exhibits certain distinct advantages, since the cytotoxic 

photosensitizing agent can be selectively activated by manipulating the location of 

light exposure. However, there are tremendous hurdles to overcome with standard 

PDT technology because of limited ROS production, lack of deep tissue penetration 

by the excitation wavelengths utilised, lack of selectivity towards tumor cells and 

rapid removal from the body. Assembly of luminescent graphene-related materials 

properties ideal for in vivo optical imaging and PDT is therefore highly potential  

prospect[60,61]. Recent advances in the GQD field have provided unique optical 

properties, plus remotely controlled release of therapeutic agents in vitro and in 

vivo[25,26,62]. The use of any precursor as carbon source and their chemical 

processing to isolate GQDs, their size tunability and fluorescence quenching can also 

have a significant effect on ROS generation ability. For example GQDs prepared 

from graphene oxide are actually graphene oxide QDs and they have different 

functional groups (such as carbonyl, carboxylic, or hydroxyl groups) as compared to 

pristine GQDs and which in turn affect the ROS generation and toxicity of GQDs in 

living systems. Surface functional groups are an especially important parameter in 

controlling the biological activities of these QDs [9,28,63,64]. In general, several 

synthesis techniques are available and have been widely used for the preparation of 

GQDs, such as lithography[65,66], hydrothermal cutting[65,66] and electrochemical 

preparation[67]. The drawbacks of these methods are the low production yield and the 

problems associated with the separation and purification of the condensed 

amorphous carbon phase from low crystalline carbon blacks and fibres[28,49,67]. The 

resultant product of this partial separation and purification is an oxidized graphite 

framework and graphene oxide QDs rather than GQDs[65]. Efficient large scale and 

cost effective production of GQDs remains an important challenge. The features of 

the different synthetic methods used for the preparation of GQDs have been 

compared in Supplementary Table 4. Our study demonstrates a novel and facile 

approach to GQD fabrication through the exfoliation and disintegration of graphite 

flakes, resulting in GQDs with an excellent repertoire of physicochemical properties, 

including biocompatibility, water dispersibility, plus high photo and pH stability with 
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higher quantum yield of 7.12 %, showing a size around 20 nm, and the majority of 

them are single layered. Further investigation shows that these GQDs exhibit strong 

luminescence with high quantum yield, which is highly desirable for the real world 

application of GQDs. Because of the carbene structures in the zigzag planes, the 

obtained GQDs exhibit exciting luminescence with high quantum yield. On the basis 

of these fascinating features, GQDs may be optimized for cytocompatibility and 

surface bioactivity, leading to unique bio-functionality not achieved through existing 

synthesis approaches. Crucially, they have ideal luminescent features and can 

generate high yields of singlet oxygen (and other oxygen radicals), above and 

beyond those currently achievable with state-of-the-art PDT agents. The quantum 

yield of our GQD preparation compares favourably with that shown in a recent study 

by Ge et al[25] in which the authors use an alternative strategy for GQD preparation, 

based on a hydrothermal method using polythiophene derivatives. These two 

contrasting approaches to GQD fabrication result in nanoparticles with comparable 

physicochemical properties, indicating that GQDs can be robustly and easily 

produced with manufacturing processes which could be upscaled for future 

therapeutic applications while conforming to GMP guidelines. These complementary 

studies demonstrate that GQDs are therefore highly efficacious for PDT targeting of 

both cervical carcinoma xenografts in rats and breast cancer xenografts in mice[25], 

indicating the potentially wide applicability of this technology in a range of tumour 

types. Building on previous studies, we also investigated the inherent toxicity of 

GQDs, which is a pivotal consideration for future therapeutic application. 

Encouragingly, our data indicate that GQDs have minimal toxicity in fibroblasts or 

epithelial cells cultured in vitro. GQDs were then injected at a range of doses into 

healthy rats, which were monitored over a four week period. The rats had no overt 

signs of discomfort or ill health. Post mortem analysis revealed only limited 

histological changes in the liver and lungs, suggestive of a mild inflammatory reaction, 

but no notable changes were observed in the heart or kidneys. These findings 

support the biocompatibility of GQDs and alleviate concerns about the toxic side-

effects of this treatment approach, although future studies should address long-term 

toxicology. This investigation also demonstrated that the intensity of the electron 

paramagnetic resonance signal, resulting from singlet oxygen generation, showed an 

increase which was dependent on the irradiation time. Singlet oxygen generation was 

also carried out in D2O and in the presence of the 1O2 quencher, L-Histidine. When 
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generated in D2O, 1O2 has a significantly longer lifetime, which was demonstrated 

here by a 44% increase in the concentration of TEMPOL detected post-irradiation 

and the addition of the transition metal chelator DTPA inhibited the production of •OH, 

leaving a O2
•--specific electron paramagnetic resonance spectrum. 

 

In summary, we have demonstrated a straightforward and facile approach for GQD 

manufacture, generating GQDs with high singlet oxygen yield, high biocompatibility 

and corrosion resistance, plus the high photo/pH- stability, indicating their potential 

as a flexible, multifunctional nanoplatform for cancer therapy. The applications of 

GQDs are wide-ranging and could be easily extended into other unique functional 

materials and open new doors for precision nanomedicine in future clinical 

applications. 

 

5. Conclusion 

 
 We herein report the enhanced yield of singlet oxygen and associated ROS 

from a newly-synthesized GQD with potential as a smart and promising PDT agent. 

These graphite flake-derived GQDs demonstrated excellent photo-luminescent 

features, particle diameter, excellent corrosion resistance, high water solubility, high 

photo/pH-stability, good in vitro and in vivo biocompatibility and very efficient singlet 

oxygen/ROS generation. This investigation also demonstrated that the intensity of 

the electron paramagnetic resonance signal, resulting from singlet oxygen generation, 

showed an increase which was dependent on the irradiation time. 
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