6,488 research outputs found

    AZEuS: An Adaptive Zone Eulerian Scheme for Computational MHD

    Full text link
    A new adaptive mesh refinement (AMR) version of the ZEUS-3D astrophysical magnetohydrodynamical (MHD) fluid code, AZEuS, is described. The AMR module in AZEuS has been completely adapted to the staggered mesh that characterises the ZEUS family of codes, on which scalar quantities are zone-centred and vector components are face-centred. In addition, for applications using static grids, it is necessary to use higher-order interpolations for prolongation to minimise the errors caused by waves crossing from a grid of one resolution to another. Finally, solutions to test problems in 1-, 2-, and 3-dimensions in both Cartesian and spherical coordinates are presented.Comment: 52 pages, 17 figures; Accepted for publication in ApJ

    Accretion through the inner hole of transitional disks: What happens to the dust?

    Get PDF
    We study the effect of radiation pressure on the dust in the inner rim of transitional disks with large inner holes. In particular, we evaluate whether radiation pressure can be responsible for keeping the inner holes dust-free, while allowing gas accretion to proceed. This has been proposed in a paper by Chiang and Murray-Clay (2007, Nature Physics 3, p. 604) who explain the formation of these holes as an inside-out evacuation due to X- ray-triggered accretion of the innermost layer of the disk rim outside of the hole. We show that radiation pressure is clearly incapable of stopping dust from flowing into the hole because of dust pile-up and optical depth effects, and also because of viscous mixing. Other mechanisms need to be found to explain the persistence of the opacity hole in the presence of accretion, and we speculate on possible solutions.Comment: 6 pages, 3 figures, Accepted for publication by Astronomy and Astrophysic

    Total hip replacement for the treatment of end stage arthritis of the hip : a systematic review and meta-analysis

    Get PDF
    Background: Evolvements in the design, fixation methods, size, and bearing surface of implants for total hip replacement (THR) have led to a variety of options for healthcare professionals to consider. The need to determine the most optimal combinations of THR implant is warranted. This systematic review evaluated the clinical effectiveness of different types of THR used for the treatment of end stage arthritis of the hip. Methods: A comprehensive literature search was undertaken in major health databases. Randomised controlled trials (RCTs) and systematic reviews published from 2008 onwards comparing different types of primary THR in patients with end stage arthritis of the hip were included. Results: Fourteen RCTs and five systematic reviews were included. Patients experienced significant post-THR improvements in Harris Hip scores, but this did not differ between impact types. There was a reduced risk of implant dislocation after receiving a larger femoral head size (36 mm vs. 28 mm; RR = 0.17, 95% CI: 0.04, 0.78) or cemented cup (vs. cementless cup; pooled odds ratio: 0.34, 95% CI: 0.13, 0.89). Recipients of cross-linked vs. conventional polyethylene cup liners experienced reduced femoral head penetration and revision. There was no impact of femoral stem fixation and cup shell design on implant survival rates. Evidence on mortality and complications (aseptic loosening, femoral fracture) was inconclusive. Conclusions: The majority of evidence was inconclusive due to poor reporting, missing data, or uncertainty in treatment estimates. The findings warrant cautious interpretation given the risk of bias (blinding, attrition), methodological limitations (small sample size, low event counts, short follow-up), and poor reporting. Long-term pragmatic RCTs are needed to allow for more definitive conclusions. Authors are encouraged to specify the minimal clinically important difference and power calculation for their primary outcome(s) as well CONSORT, PRISMA and STROBE guidelines to ensure better reporting and more reliable production and assessment of evidence

    Which health-related quality of life score? A comparison of alternative utility measures in patients with Type 2 diabetes in the ADVANCE trial.

    Get PDF
    BACKGROUND: Diabetes has a high burden of illness both in life years lost and in disability through related co-morbidities. Accurate assessment of the non-mortality burden requires appropriate health-related quality of life and summary utility measures of which there are several contenders. The study aimed to measure the impact of diabetes on various health-related quality of life domains, and compare several summary utility measures. METHODS: In the ADVANCE (Action in Diabetes and Vascular Disease: Preterax and Diamicron MR Controlled Evaluation) study, 978 Australian patients with Type 2 diabetes completed two health-related quality of life questionnaires at baseline: the EQ-5D and the SF-36v2, from which nine summary utility measures were calculated, and compared. The algorithms were grouped into four classes: (i) based on the EQ-5D; (ii) using fewer items than those in the SF-12 (iii) using the items in the SF-12; and (iv) using all items of the SF-36. RESULTS: Overall health-related quality of life of the subjects was good (mean utility ranged from 0.68 (+/-0.08) to 0.85(+/-0.14) over the nine utility measures) and comparable to patients without diabetes. Summary indices were well correlated with each other (r = 0.76 to 0.99), and showed lower health-related quality of life in patients with major diabetes-related events such as stroke or myocardial infarction. Despite the smaller number of items used in the scoring of the EQ-5D, it generally performed at least as well as SF-36 based methods. However, all utility measures had some limitation such as limited range or ceiling effects. CONCLUSION: The summary utility measures showed good agreement, and showed good discrimination between major and minor health state changes. However, EQ-5D based measures performed as well and are generally simpler to use

    J plots: a new method for characterizing structures in the interstellar medium

    Get PDF
    Large-scale surveys have brought about a revolution in astronomy. To analyse the resulting wealth of data, we need automated tools to identify, classify, and quantify the important underlying structures. We present here a method for classifying and quantifying a pixelated structure, based on its principal moments of inertia. The method enables us to automatically detect, and objectively compare, centrally condensed cores, elongated filaments, and hollow rings. We illustrate the method by applying it to (i) observations of surface density from Hi-GAL, and (ii) simulations of filament growth in a turbulent medium. We limit the discussion here to 2D data; in a future paper, we will extend the method to 3D data

    Tunable coupling of superconducting qubits

    Full text link
    We study an LC-circuit implemented using a current-biased Josephson junction (CBJJ) as a tunable coupler for superconducting qubits. By modulating the bias current, the junction can be tuned in and out of resonance and entangled with the qubits coupled to it. One can thus implement two-qubit operations by mediating entanglement. We consider the examples of CBJJ and charge--phase qubits. A simple recoupling scheme leads to a generalization to arbitrary qubit designs.Comment: To appear in Phys. Rev. Lett., 3 figure

    Public experiences of mass casualty decontamination

    Get PDF
    In this article, we analyze feedback from simulated casualties who took part in field exercises involving mass decontamination, to gain an understanding of how responder communication can affect people’s experiences of and compliance with decontamination. We analyzed questionnaire data gathered from 402 volunteers using the framework approach, to provide an insight into the public’s experiences of decontamination and how these experiences are shaped by the actions of emergency responders. Factors that affected casualties’ experiences of the econtamination process included the need for greater practical information and better communication from responders, and the need for privacy. Results support previous findings from small-scale incidents that involved decontamination in showing that participants wanted better communication from responders during the process of decontamination, including more practical information, and that the failure of responders to communicate effectively with members of the public led to anxiety about the decontamination process. The similarity between the findings from the exercises described in this article and previous research into real incidents involving decontamination suggests that field exercises provide a useful way to examine the effect of responder communication strategies on the public’s experiences of decontamination. Future exercises should examine in more detail the effect of various communication strategies on the public’s experiences of decontamination. This will facilitate the development of evidence-based communication strategies intended to reduce anxiety about decontamination and increase compliance among members of the public during real-life incidents that involve mass decontamination

    Comparing interferon-gamma release assays with tuberculin skin test for identifying latent tuberculosis infection that progresses to active tuberculosis : systematic review and meta-analysis

    Get PDF
    Background Timely and accurate identification of people with latent tuberculosis infection (LTBI) is important for controlling Mycobacterium tuberculosis (TB). There is no gold standard for diagnosis of LTBI. Screening tests such as interferon gamma release assays (IGRAs) and tuberculin skin test (TST) provide indirect and imperfect information. This systematic review compared two types of IGRAs QuantiFERON®-TB Gold In-Tube test (QFT-GIT) and T-SPOT.TB with TST for identification of LTBI by predicting progression to a diagnosis of active TB in three subgroups: children, immunocompromised people, and those recently arrived from countries with high TB burden. Methods Cohort studies were eligible for inclusion. We searched MEDLINE, EMBASE, the Cochrane Library and other databases from December 2009 to June 2015. One reviewer screened studies, extracted data, and assessed risk of bias with cross checking by a second reviewer. Strength of association between test results and incidence of TB was summarised using cumulative incidence ratios (CIRs with 95% CIs). Summary effect measures: the ratio of CIRs (R-CIR) with 95% CIs. R-CIRs, were pooled using a random-effects model. Heterogeneity was assessed using Chi-squared and I2 statistics. Results Seventeen studies, mostly of moderate or high risk of bias (five in children, 10 in immunocompromised people, and two in those recently arrived) were included. In children, while in two studies, there was no significant difference between QFT-GIT and TST (≥5 mm) (pooled R-CIR = 1.11, 95% CI: 0.71, 1.74), two other studies showed QFT-GIT to outperform TST (≥10 mm) in identifying LTBI. In immunocompromised people, IGRA (T-SPOT.TB) was not significant different from TST (≥10 mm) for identifying LTBI, (pooled R-CIR = 1.01, 95% CI: 0.65, 1.58). The forest plot of two studies in recently arrived people from countries with high TB burden demonstrated inconsistent findings (high heterogeneity; I2 = 92%). Conclusions Prospective studies comparing IGRA testing against TST on the progression from LTBI to TB were sparse, and these results should be interpreted with caution due to uncertainty, risk of bias, and unexplained heterogeneity. Population-based studies with adequate sample size and follow-up are required to adequately compare the performance of IGRA with TST in people at high risk of TB

    Three-dimensional magnetohydrodynamic simulations of the evolution of magnetic fields in Fanaroff-Riley class II radio sources

    Get PDF
    Radio observations of Fanaroff-Riley class II sources often show correlations between the synchrotron emission and the linear-polarimetric distributions. Magnetic position vectors seem to align with the projected emission of both the radio jets and the sources' edges. Using statistics we study such relation as well as its unknown time evolution via synthetic polarisation maps of model FR II sources formed in 3D-MHD numerical simulations of bipolar, hypersonic and weakly magnetised jets. The magnetic field is initially random with a Kolmogorov power spectrum, everywhere. We investigate the structure and evolution of magnetic fields in the sources as a function of the power of jets and the observational viewing angle. Our synthetic polarisation maps agree with observations, showing B-field vectors which are predominantly aligned with the jet axis, and show that magnetic fields inside sources are shaped by the jets' backflow. Polarimetry is found to correlate with time, the viewing angle and the jet-to-ambient density contrast. The magnetic structure inside thin elongated sources is more uniform than inside more spherical ones. We see jets increase the magnetic energy in cocoons in proportion to the jet velocity and the cocoon width. Filaments in the synthetic emission maps suggest turbulence develops in evolved sources.Comment: Accepted for publication in the MNRAS. 21 pages, 11 figure
    corecore