39 research outputs found

    Epistasis and the evolutionary process

    Get PDF

    An Adaptive Threshold in Mammalian Neocortical Evolution

    Full text link
    Expansion of the neocortex is a hallmark of human evolution. However, it remains an open question what adaptive mechanisms facilitated its expansion. Here we show, using gyrencephaly index (GI) and other physiological and life-history data for 102 mammalian species, that gyrencephaly is an ancestral mammalian trait. We provide evidence that the evolution of a highly folded neocortex, as observed in humans, requires the traversal of a threshold of 10^9 neurons, and that species above and below the threshold exhibit a bimodal distribution of physiological and life-history traits, establishing two phenotypic groups. We identify, using discrete mathematical models, proliferative divisions of progenitors in the basal compartment of the developing neocortex as evolutionarily necessary and sufficient for generating a fourteen-fold increase in daily prenatal neuron production and thus traversal of the neuronal threshold. We demonstrate that length of neurogenic period, rather than any novel progenitor-type, is sufficient to distinguish cortical neuron number between species within the same phenotypic group.Comment: Currently under review; 38 pages, 5 Figures, 13 Supplementary Figures, 2 Table

    linkcomm: an R package for the generation, visualization, and analysis of link communities in networks of arbitrary size and type

    Get PDF
    Summary: An essential element when analysing the structure, function, and dynamics of biological networks is the identification of communities of related nodes. An algorithm proposed recently enhances this process by clustering the links between nodes, rather than the nodes themselves, thereby allowing each node to belong to multiple overlapping or nested communities. The R package ‘linkcomm’ implements this algorithm and extends it in several aspects: (i) the clustering algorithm handles networks that are weighted, directed, or both weighted and directed; (ii) several visualization methods are implemented that facilitate the representation of the link communities and their relationships; (iii) a suite of functions are included for the downstream analysis of the link communities including novel community-based measures of node centrality; (iv) the main algorithm is written in C++ and designed to handle networks of any size; and (v) several clustering methods are available for networks that can be handled in memory, and the number of communities can be adjusted by the user

    An Excess of Gene Expression Divergence on the X Chromosome in Drosophila Embryos: Implications for the Faster-X Hypothesis

    Get PDF
    The X chromosome is present as a single copy in the heterogametic sex, and this hemizygosity is expected to drive unusual patterns of evolution on the X relative to the autosomes. For example, the hemizgosity of the X may lead to a lower chromosomal effective population size compared to the autosomes, suggesting that the X might be more strongly affected by genetic drift. However, the X may also experience stronger positive selection than the autosomes, because recessive beneficial mutations will be more visible to selection on the X where they will spend less time being masked by the dominant, less beneficial allele—a proposal known as the faster-X hypothesis. Thus, empirical studies demonstrating increased genetic divergence on the X chromosome could be indicative of either adaptive or non-adaptive evolution. We measured gene expression in Drosophila species and in D. melanogaster inbred strains for both embryos and adults. In the embryos we found that expression divergence is on average more than 20% higher for genes on the X chromosome relative to the autosomes; but in contrast, in the inbred strains, gene expression variation is significantly lower on the X chromosome. Furthermore, expression divergence of genes on Muller's D element is significantly greater along the branch leading to the obscura sub-group, in which this element segregates as a neo-X chromosome. In the adults, divergence is greatest on the X chromosome for males, but not for females, yet in both sexes inbred strains harbour the lowest level of gene expression variation on the X chromosome. We consider different explanations for our results and conclude that they are most consistent within the framework of the faster-X hypothesis

    Abundant Occurrence of Basal Radial Glia in the Subventricular Zone of Embryonic Neocortex of a Lissencephalic Primate, the Common Marmoset Callithrix jacchus

    Get PDF
    Subventricular zone (SVZ) progenitors are a hallmark of the developing neocortex. Recent studies described a novel type of SVZ progenitor that retains a basal process at mitosis, sustains expression of radial glial markers, and is capable of self-renewal. These progenitors, referred to here as basal radial glia (bRG), occur at high relative abundance in the SVZ of gyrencephalic primates (human) and nonprimates (ferret) but not lissencephalic rodents (mouse). Here, we analyzed the occurrence of bRG cells in the embryonic neocortex of the common marmoset Callithrix jacchus, a near-lissencephalic primate. bRG cells, expressing Pax6, Sox2 (but not Tbr2), glutamate aspartate transporter, and glial fibrillary acidic protein and retaining a basal process at mitosis, occur at similar relative abundance in the marmoset SVZ as in human and ferret. The proportion of progenitors in M-phase was lower in embryonic marmoset than developing ferret neocortex, raising the possibility of a longer cell cycle. Fitting the gyrification indices of 26 anthropoid species to an evolutionary model suggested that the marmoset evolved from a gyrencephalic ancestor. Our results suggest that a high relative abundance of bRG cells may be necessary, but is not sufficient, for gyrencephaly and that the marmoset's lissencephaly evolved secondarily by changing progenitor parameters other than progenitor typ

    Abundant Occurrence of Basal Radial Glia in the Subventricular Zone of Embryonic Neocortex of a Lissencephalic Primate, the Common Marmoset Callithrix jacchus

    Get PDF
    Subventricular zone (SVZ) progenitors are a hallmark of the developing neocortex. Recent studies described a novel type of SVZ progenitor that retains a basal process at mitosis, sustains expression of radial glial markers, and is capable of self-renewal. These progenitors, referred to here as basal radial glia (bRG), occur at high relative abundance in the SVZ of gyrencephalic primates (human) and nonprimates (ferret) but not lissencephalic rodents (mouse). Here, we analyzed the occurrence of bRG cells in the embryonic neocortex of the common marmoset Callithrix jacchus, a near-lissencephalic primate. bRG cells, expressing Pax6, Sox2 (but not Tbr2), glutamate aspartate transporter, and glial fibrillary acidic protein and retaining a basal process at mitosis, occur at similar relative abundance in the marmoset SVZ as in human and ferret. The proportion of progenitors in M-phase was lower in embryonic marmoset than developing ferret neocortex, raising the possibility of a longer cell cycle. Fitting the gyrification indices of 26 anthropoid species to an evolutionary model suggested that the marmoset evolved from a gyrencephalic ancestor. Our results suggest that a high relative abundance of bRG cells may be necessary, but is not sufficient, for gyrencephaly and that the marmoset's lissencephaly evolved secondarily by changing progenitor parameters other than progenitor type

    Estradiol alters the immune-responsiveness of cervical epithelial cells stimulated with ligands of Toll-like receptors 2 and 4.

    Get PDF
    The mucosa of the female reproductive tract plays a pivotal role in host defence. Pregnancy must alter immunological mechanisms at this interface to protect the conceptus. We sought to determine how estradiol (E2) alters the immune-responsiveness of cervical epithelial cells to ligand stimulation of Toll-like receptor (TLR)-2 and -4. Human ectocervical epithelial cells (HECECs) were cultured and co-incubated with two concentrations of E2 and peptidoglycan (PGN) or lipopolysaccharide (LPS) over durations that ranged between 10 minutes and 18 hours. Cytometric Bead Array was performed to quantify eight cytokines in the supernatant fluid. In response to PGN, HECECs co-incubated with E2 released lesser quantities of IL-1ß and IFNγ, higher levels of RANTES, and variable levels of IL-6 and IL-8 than those not exposed to E2. In contrast, HECECs co-incubated with LPS and E2 secreted increased levels of IL-1ß, IL-6, IL-8, and IFNγ at 2 and 18 hours than HECECs not exposed to E2, and reduced levels of RANTES at same study time-points. Estradiol alters the immune-responsiveness of cultured HECECs to TLR2 and TLR4 ligands in a complex fashion that appears to vary with bacterial ligand, TLR subtype, and duration of exposure. Our observations are consistent with the functional complexity that this mucosal interface requires for its immunological roles

    Comparative analysis of the transcriptome across distant species

    Get PDF
    The transcriptome is the readout of the genome. Identifying common features in it across distant species can reveal fundamental principles. To this end, the ENCODE and modENCODE consortia have generated large amounts of matched RNA-sequencing data for human, worm and fly. Uniform processing and comprehensive annotation of these data allow comparison across metazoan phyla, extending beyond earlier within-phylum transcriptome comparisons and revealing ancient, conserved features. Specifically, we discover co-expression modules shared across animals, many of which are enriched in developmental genes. Moreover, we use expression patterns to align the stages in worm and fly development and find a novel pairing between worm embryo and fly pupae, in addition to the embryo-to-embryo and larvae-to-larvae pairings. Furthermore, we find that the extent of non-canonical, non-coding transcription is similar in each organism, per base pair. Finally, we find in all three organisms that the gene-expression levels, both coding and non-coding, can be quantitatively predicted from chromatin features at the promoter using a 'universal model' based on a single set of organism-independent parameters
    corecore